Ultra-Fast All-Optical Half Subtractor Based on Photonic Crystal Ring Resonators
Subject Areas : Journal of Optoelectronical NanostructuresMohammad Soroosh 1 * , Atefeh Mirali 2 , Ebrahim Farshidi 3
1 - Dep. electrical engineering, Shahid Cham
2 - Department of Electrical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 - Department of Electrical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Keywords: Photonic Crystal, Photonic Bandgap, Kerr Effect, Optical Devices, Subtractor,
Abstract :
Abstract: In this paper, we aim to design and propose a novel structure for all-optical
half subtractor based on the photonic crystal. The structure includes two optical switches,
one power splitter, and one power combiner. The optical switches are made of the
resonant rings which use the nonlinear rods for dropping operation. The footprint of the
designed structure is about 602 μm2 that is more compact than one in most works.
Furthermore, despite some works, the input signals are the same in the phase angle and
the optical power. Also, each input signal is applied to one port while this issue has not
been considered in some works. Plane wave expansion and finite difference time domain
methods are used to calculate the band diagram and simulation of the optical wave
propagation throughout the structure, respectively. The maximum obtained rise time of
all states of the proposed device is just about 1.4 ps. Besides, the presented structure is
capable of working at the third communication window so it can be matched with optical
fiber transmission systems.
[1] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58(23) (1987) 2486-2489. Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.58.2486
[2] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58(20) (1987) 2059–2062. Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.58.2059
[3] D. Liu, Y. Gao, A. Tong, and S. Hu, Absolute photonic band gap in 2D honeycomb annular photonic crystals, Phys. Lett. A. 379(3) (2015) 214-217.
Available: https://www.sciencedirect.com/science/article/pii/S0375960114011591
[4] H. Alipour-Banaei and F. Mehdizadeh, Bandgap calculation of 2D hexagonal photonic crystal structures based on regression analysis, J. Opt. Commun. 34(4) (2013) 285-293.
Available: https://www.degruyter.com/view/j/joc.2013.34.issue-4/joc-2013-0033/joc-2013-0033.xml
[5] M. Noori, M. Soroosh, and H. Baghban, Highly efficient self-collimation based waveguide for Mid-IR applications, Photonics Nanostructures Fundam. Appl. 19 (2016) 1-11.
Available: https://www.sciencedirect.com/science/article/pii/S1569441016000067
[6] M. Noori and M. Soroosh, A comprehensive comparison of photonic band gap and self-collimation based 2D square array waveguides, Opt. Int. J. Light Electron Opt. 126(23) (2015) 4775-4781. Available: https://www.sciencedirect.com/science/article/pii/S0030402615008438
[7] Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, Active control of slow light on a chip with photonic crystal waveguides, Nature 438 (2005) 65-69. Available: https://www.nature.com/articles/nature04210
[8] G. Moloudian, R. Sabbaghi-Nadooshan, and M. Hassangholizadeh-Kashtiban, Design of all-optical tunable filter based on two-dimensional photonic crystals for WDM (wave division multiplexing) applications, J. Chinese Inst. Eng. Trans. Chinese Inst. Eng. A., 39(8) (2016) 971-976. Available: https://www.tandfonline.com/doi/abs/10.1080/02533839.2016.1215937?journalCode=tcie20
[9] M. Zamani, Photonic crystal-based optical filters for operating in second and third optical fiber windows, Superlattices Microstruct. 92 (2016) 157-165.
Available: https://www.sciencedirect.com/science/article/pii/S0749603616300684
Ultra-Fast All-Optical Half Subtractor Based on Photonic Crystal Ring Resonators * 95
[10] V. Fallahi and M. Seifouri, Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical telecommunication devices, J. Optoelectro. Nanostruc. 4(2) (2019) 53-68. Available: http://jopn.miau.ac.ir/article_3478.html
[11] Z. Rashki, S. J. S. Mahdavi Chabok, Novel Design for Photonic Crystal Ring Resonators Based Optical Channel Drop Filter, J. Optoelectro. Nanostruc. 3(3) (2018) 59-78. Available: http://jopn.miau.ac.ir/article_3046.html
[12] V. Kannaiyan, R. Savarimuthu, and S. K. Dhamodharan, Investigation of 2D-photonic crystal resonant cavity based WDM demultiplexer, Opto-Electronics Rev. 26(2) (2018) 108-115.
Available: https://www.sciencedirect.com/science/article/pii/S1230340217300951
[13] E. Rafiee and F. Emami, Design of a novel all-optical ring shaped demultiplexer based on two-dimensional photonic crystals, Opt. Int. J. Light Electron Opt. 140 (2017) 873-877.
Available: https://www.sciencedirect.com/science/article/pii/S0030402617305326
[14] R. Talebzadeh, M. Soroosh, Y.S. Kavian, and F. Mehdizadeh, Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities, Opt. Int. J. Light Electron Opt., 140 (2017) 331-337. Available: https://www.sciencedirect.com/science/article/pii/S0030402617304795
[15] H. Alipour-Banaei, S. Serajmohammadi, and F. Mehdizadeh, All optical NAND gate based on nonlinear photonic crystal ring resonators, Opt. Int. J. Light Electron Opt. 130 (2017) 1214-1221. Available: https://www.sciencedirect.com/science/article/pii/S0030402616315261
[16] A. Kumar, M. M. Gupta, and S. Medhekar, All-optical NOT and AND gates based on 2D nonlinear photonic crystal ring resonant cavity, Opt. Int. J. Light Electron Opt. 179 (2019) 239-247. Available: https://www.sciencedirect.com/science/article/pii/S003040261831711X
[17] N. F.F. Areed, A. El Fakharany, M. F.O. Hameed, and S. S. A. Obayya, Controlled optical photonic crystal AND gate using nematic liquid crystal layers, Opt. Quantum Electron. 49 (2017) 45-53. Available: https://link.springer.com/article/10.1007/s11082-016-0852-z
[18] T. A. Moniem, All-optical XNOR gate based on 2D photonic-crystal ring resonators, Quantum Electron. 47(2) (2017) 169-176. Available: http://adsabs.harvard.edu/abs/2017QuEle..47..169M
96 * Journal of Optoelectronical Nanostructures Winter 2020 / Vol. 5, No. 1
[19] F. Mehdizadeh and M. Soroosh, Designing of all optical NOR gate based on photonic crystal, Indian J. Pure Appl. Phys. 54 (2016) 35-39. Available: http://op.niscair.res.in/index.php/IJPAP/article/view/5678/576
[20] M. Neisy, M. Soroosh, and K. Ansari-Asl, All optical half adder based on photonic crystal resonant cavities, Photonic Netw. Commun. 35(2) (2018) 245-250. Available: https://link.springer.com/article/10.1007/s11107-017-0736-6
[21] M. R. Jalali-Azizpoor, M. Soroosh, and Y. Seifi-Kavian, Application of self-collimated beams in realizing all-optical photonic crystal-based half-adder, Photonic Netw. Commun. 36(3) (2018) 344-343. Available: https://link.springer.com/article/10.1007/s11107-018-0786-4
[22] F. Cheraghi, M. Soroosh, and G. Akbarizadeh, An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities, Superlattices Microstruct. 113 (2018) 359-365. Available: https://www.sciencedirect.com/science/article/pii/S0749603617322826
[23] S. Serajmohammadi, H. Alipour-Banaei, and F. Mehdizadeh, Proposal for realizing an all-optical half adder based on photonic crystals, Appl. Opt. 57(7) (2018) 1617-1621.
Available: https://www.osapublishing.org/ao/abstract.cfm?URI=ao-57-7-1617
[24] A. Rahmani and F. Mehdizadeh, Application of nonlinear PhCRRs in realizing all optical half-adder, Opt. Quantum Electron. 50 (2017) 30-37. Available: https://link.springer.com/article/10.1007/s11082-017-1301-3
[25] T. Daghooghi, M. Soroosh, and K. Ansari-Asl, A low-power all optical decoder based on photonic crystal nonlinear ring resonators, Opt. Int. J. Light Electron Opt. 174 (2018) 400-408. Available: https://www.sciencedirect.com/science/article/pii/S0030402618312397
[26] F. Mehdizadeh, H. Alipour-Banaei, and S. Serajmohammadi, Design and simulation of all optical decoder based on nonlinear PhCRRs, Opt. Int. J. Light Electron Opt. 156 (2018) 701-706. Available: https://www.sciencedirect.com/science/article/pii/S003040261731639X
[27] T. Daghooghi, M. Soroosh, and K. Ansari-Asl, Ultra-fast all-optical decoder based on nonlinear photonic crystal ring resonators, Appl. Opt. 57(9) (2018) 2250-2257.
Available: https://www.osapublishing.org/ao/abstract.cfm?URI=ao-57-9-2250
[28] F. Mehdizadeh, H. Alipour-banaei, and S. Serajmohammadi, Study the role of non-linear resonant cavities in photonic crystal-based decoder switches, J. Mod. Opt. 64(13) (2017) 1233-1239.
Available: https://www.tandfonline.com/doi/abs/10.1080/09500340.2016.1275854
[29] T. A. Moniem, All optical active high decoder using integrated 2D square lattice photonic crystals, J. Mod. Opt. 62(19) (2015) 1643-1649. Available: https://www.tandfonline.com/doi/abs/10.1080/09500340.2015.1061061?journalCode=tmop20
[30] F. Haddadan and M. Soroosh, Low-power all-optical 8-to-3 encoder using photonic crystal-based waveguides, Photonic Netw. Commun. 37(1) (2018) 67-73. Available: https://link.springer.com/article/10.1007/s11107-018-0795-3
[31] F. Mehdizadeh, M. Soroosh, and H. Alipour-Banaei, Proposal for 4-to-2 optical encoder based on photonic crystals, IET Optoelectron. 11(1) (2017) 29-35.
Available: https://digital-library.theiet.org/content/journals/10.1049/iet-opt.2016.0022
[32] A. Salimzadeh and H. Alipour-Banaei, An all optical 8 to 3 encoder based on photonic crystal OR-gate ring resonators, Opt. Commun. 410 (2018) 793-798.
Available: https://www.sciencedirect.com/science/article/pii/S0030401817310544
[33] T. A. Moniem, All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators, J. Mod. Opt. 63(8) (2016) 735-741. Available: https://www.tandfonline.com/doi/abs/10.1080/09500340.2015.1094580?journalCode=tmop20
[34] K. Fasihi, All-optical analog-to-digital converters based on cascaded 3-dB power splitters in 2D photonic crystals, Opt. Int. J. Light Electron Opt. 125 (2014) 6520-6523.
Available: https://www.sciencedirect.com/science/article/pii/S0030402614009784
[35] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, A novel proposal for all optical analog-to-digital converter based on photonic crystal structures, IEEE Photonics J. 9(2) (2017) 4700311–4700322. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7891002
[36] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, All optical 2-bit analog to digital converter using photonic crystal based cavities, Opt. Quantum Electron. 49 (2017) 38-45. Available: https://link.springer.com/article/10.1007/s11082-016-0880-8
[37] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure, Appl. Opt. 56(7) (2017) 1799-1806. Available: https://www.osapublishing.org/ao/abstract.cfm?uri=ao-56-7-1799
[38] A. Tavousi and M. A. Mansouri-Birjandi, Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators, Superlattices Microstruct. 114 (2018) 23-31.
Available: https://www.sciencedirect.com/science/article/pii/S0749603617323273
[39] A. Tavousi, M. A. Mansouri-Birjandi, and M. Saffari, Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators, Phys. E Low-dimensional Syst. Nanostructures, 83(?) (2016) 101-106. Available: https://www.sciencedirect.com/science/article/pii/S1386947716301795?via%3Dihub
[40] Y. C. Jiang, S. B. Liu, H. F. Zhang, and X. K. Kong, Design of ultra-compact all optical half subtracter based on self-collimation in the two-dimensional photonic crystals, Opt. Commun., 356 (2015) 325-329. Available: https://www.sciencedirect.com/science/article/abs/pii/S0030401815006598?via%3Dihub
[41] F. Parandin, M. R. Malmir, and M. Naseri, All-optical half-subtractor with low-time delay based on two-dimensional photonic crystals, Superlattices Microstruct., 109 (2017) 437-441.
Available: https://www.sciencedirect.com/science/article/pii/S0749603617309849?via%3Dihub
[42] R. Sivaranjani, A. S. Raja, D. S. Sundar, and T. K. Shanthi, Design of 2-dimensional photonic crystal based all optical half subtractor, International J. Adv. Eng. Res. Develop. 5(8) (2018) 1-7. Available: http://ijaerd.com/papers/special_papers/NCMOC11.pdf
[43] H. A. Haus, Waves and fields in optoelectronics, Prentice-Hall, Chapter 7, 1984.