The Investigation of Giant Magneto Resistance in an Inhomogeneous Ladder Lattice
Subject Areas : Journal of Optoelectronical NanostructuresZeynab Bagheri 1 , Mehdi Hosseini 2 , Omid Reza Daneshmandi 3
1 - Department of Physics, Shiraz University of Technology, Shiraz, Iran
2 - Shiraz University of Technology
3 - Sensor Research Group, Institute of Mechanics, Department of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.
Keywords: Magnetic Sensor, Giant Magneto Resistance, Resistor Network Model,
Abstract :
Abstract : The variation of the electrical resistivity of a material in the external
magnetic field is known as magneto resistance. This phenomenon has been attracted
both theoretical and experimental researchers in miniaturization of magneto meters in
the recent years. In this paper, the magneto resistance of an inhomogeneous two
dimensional conductor with ladder geometry is simulated by using a two dimensional
resistor network model. Maxwell's equations have been solved for a point of lattice
considered as disk and then, its magneto resistance was calculated using a network
model. The results illustrate that the magneto resistance depends on the specific
resistance ratios and their locations. Moreover, the results demonstrate when
inhomogeneity is added properly, the magneto resistance will be increased, otherwise it
will be reduced. The results also show that for special values of physical parameters
especially the inhomogeneity, the magneto resistance is diverged at special magnetic
field.
[1] J. Q. Xiao, J. S. Jiang, and C. L. Chien, Giant magneto resistance in nonmultilayer magnetic systems. Phys. Rev. Lett, 68, No. 25, (1992), 3749.
[2] Z. Jia, R. Zhang, Q. Han, Q. Yan, R. Zhu, D. Yu, and X. Wu, Large tunable linear magneto resistance in gold nanoparticle decorated graphene. Appl. Phys. Lett, 105, No.14, (2014), 143103.
[3] A. A. Abrikosov, Quantum linear magneto resistance. Euro. Phys. Lett, 49, No. 6, (2000), 789.
[4] J. Ping, I. Yudhistira, N. Ramakrishnan, S. Cho, S. Adam, and M. S. Fuhrer, Disorder-induced magneto resistance in a two-dimensional electron system. Phys. Rev. Lett, 113, No. 4, (2014), 047206.
[5] S. D. Sarma, S. Adam, E. H. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene. Rev.Mod. Phys, 83, No. 2, (2011), 407.
[6] J. Ping, and M. S. Fuhrer, Carbon impurities on graphene synthesized by chemical vapor deposition on platinum. J. Appl. Physics, 116, No. 4, (2014), 044303.
[7] M. M. Parish, and P. B. Littlewood, Non-saturating magneto resistance in heavily disordered semiconductors. Nature, 426, No. 6963, (2003) , 162.
[8] M. M. Parish, and P. B. Littlewood, Classical magnetotransport of Inhomogeneous conductors. Phy. Rev. B, 72, No. 9, (2005), 094417.
[9] F. Kisslinger, C. Ott, C. Heide, E. Kampert, B. Butz, E Spiecker,and H. B. Weber, Linear magneto resistance in mosaic-like bilayer graphene. Nat. Phys, 11, No. 8, (2015), 650.
[10] K. V. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett., 45, No. 6, (1980), 494.
[11] D. C. Tsui, H. L.Stormer, and A. C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit. Phys.l Rev. Lett, 48, No. 22, (1982), 1559.
[12] R. Xu, A. Husmann, T. F. Rosenbaum, M. L. Saboungi, J. E. Enderby, and P. B. Littlewood, Large magneto resistance in non-magnetic silver chalcogenides. Nature, 390, No. 6655, (1997), 57.
[13] J. Hu, and T. F. Rosenbaum, Classical and quantum routes to linear magneto resistance. Nat. Mater, 7, No. 9, (2008), 697.
[14] W. R. Branford, A. Husmann, S. A. Solin, S. K. Clowes, T. Zhang, Y. V. Bugoslavsky, and L. F. Cohen, Geometric manipulation of the high-field linear magneto resistance in InSb epilayers on GaAs (001). Appl. Phys. Lett, 86, No. 20, (2005), 202116.
[15] A. L. Friedman, J. L. Tedesco, P. M. Campbell, J. C. Culbertson, E. Aifer, F. K. Perkins, and D. K. Gaskill, Quantum linear magneto resistance in multilayer epitaxial graphene. Nano. Lett, 10, No. 10, (2010), 3962-3965.
[16] W. Zhang, R.Yu, W. Feng, Y.Yao, H. Weng, X. Dai, and Z. Fang, Topological Aspect and Quantum Magneto resistance of ƒہ. Ag 2 Te. Phys. Rev. Lett, 106, No. 15, (2011), 156808.
[17] N. V. Kozlova, N. Mori, O. Makarovsky, L. Eaves, Q. D. Zhuang, A. Krier, and A. Patane, Linear magneto resistance due to multiple-electron scattering by low-mobility islands in an inhomogeneous conductor. Nat. Commun, 3, (2012), 1097.
[18] D. G. Costa, R. B. Capaz, R. Falconi, S. Strikos, and M. ElMassalami, Linear magnetoresistivity in layered semimetallic CaAl 2 Si 2, Sci. Rep, 8, No. 1, (2018), 4102.
[19] F. Kisslinger, C. Ott, and H. B. Weber, Origin of nonsaturating linear magnetoresistivi,. Phys. Rev. B, 95,No.2, (2017), 024204.
[20] G. Y. Vasileva, D. Smirnov, Y. L. Ivanov, Y. B. Vasilyev, P. S. Alekseev, A. P. Dmitriev, and R. J. Haug, Linear magnetoresistance in compensated graphene bilayer, Phys. Rev.B, 93, No.19, (2016), 195430.
[21] A. A. Patel, J. McGreevy, D. P. Arovas, and S. Sachdev, Magnetotransport in a model of a disordered strange metal. Phys. Rev. X, 8, No.2, (2018), 021049.
[22] O. E. Raichev, Nonlocality, Correlations, and Magnetotransport in a Spatially Modulated Two-Dimensional Electron Ga, Phys. Rev. lett, 120, No.14, (2018), 146802.
[23] Z. Bagheri, M. Hosseini, O. R. Daneshmandi, Giant magneto resistance for a periodical one- dimensional system, The Annual Physics Conference of Iran, (1397), 1455-1458