Effect of dielectric constant on the plasma characteristics of a dielectric barrier discharge reactor
Subject Areas : Journal of Optoelectronical Nanostructures
1 - Assistant Professor, Department of Electrical Engineering Aras Branch, Islamic Azad University, Jolfa, Iranversity, Jolfa, Iran
Keywords: Dielectric barrier discharge (DBD), Dielectric constant , Plasma characteristics, Numerical simulation, Electron density,
Abstract :
This research investigates the effect of dielectric constant variations of insulating materials on the plasma characteristics of a dielectric barrier discharge reactor at atmospheric pressure. Numerical simulations demonstrate that changes in the dielectric constant can significantly influence the spatial distribution of the plasma, electric field strength, and other key discharge parameters. The results of this study are crucial for the optimal design of DBD reactors in a wide range of applications, including plasma processing, ozone generation, and water treatment.
[1] M. M. Nasiru, E. B. Frimpong, U. Muhammad, J. Qian, A. T. Mustapha, W. Yan, H. Zhuang and J. Zhang, Compr. Impact of dielectric barrier discharge cold plasma on the lipid oxidation, color stability, and protein structures of myoglobin-added washed pork muscle. Rev. Food Sci. Food Saf, 20, 2626 (2021).
[2] R. Snoeckx and A. Bogaerts, Plasma technology – a novel solution for CO2 conversion. Chem. Soc. Rev 46, 5805 (2017).
[3] A. H. Khoja, M. Tahir and N. A. S. Amin, Recent developments in non-thermal catalytic DBD plasma reactor for dry reforming of methane. Energy convers. manage, 183, 529-560 (2019).
[4] N. Dadashzadeh and E. Poorreza, Comparative analysis and simulation of a dielectric discharge barrier reactor using the finite element method, Quarterly Journal of Optoelectronic 6 (3), 7-16 (2024). https://doi.org/10.30473/jphys.2024.69563.1172
[5] E. Poorreza and N. Dadashzadeh Gargari, Computational Study of an Inductively Coupled Plasma with Different Copper Coil Designs and Dielectric Thickness Russian Journal of Physical Chemistry A 98, pp. 249-256.(2024).https://doi.org/10.1134/S0036024424050224
[6] E. Poorreza and N. Dadashzadeh, Modeling and Finite element analysis of argon gas plasma produced by inductively coupled plasma method with variable input power, coil position and dielectric thickness, Quarterly Journal of Optoelectronic6(1),33-40(2023). https://doi.org/10.1134/S1990793123030235.
[7] Noushin Dadashzadeh. Optimization of Electricity Consumption using Dielectric Barrier Discharge Method (DBD), Majlesi Journal of Electrical Engineering 17 (1), 117-121 (2023)
https://doi.org/10.30486/mjee.2023.1975011.1024.
[8] E. Poorreza and N. Dadashzadeh Gargari, Modeling and simulation of a microwave-assisted plasma with different input power for plasma-based applications, Russ. J. Phys. Chem. B 17 719–724 (2023). https://doi.org/10.1134/S1990793123030235.
[9] G. Neretti, A. Popoli, S.G. Scaltriti, A. Cristofolini, “Real Time Power Control in a High Voltage Power Supply for Dielectric Barrier Discharge Reactors: Implementation Strategy and Load Thermal Analysis,” Electronics, 11(10) (2022) 1536.
[10] A. M. Lopez, H. Piquet, D. Patino, R. Diez and X. Bonnin, Parameters identification and gas behavior characterization of DBD systems. IEEE Trans plasma sci 41, 2335 (2013).
[11] N. Jidenko, C. Jimenez, F. Massines, J. Borra, Nano - particle size -dependent charging and electro - deposition in dielectric barrier discharges at atmospheric pressure for thin SiOx film deposition, Journal of Physics D: Applied Physics, 40(14) (2007) 4155.
[12]F. Sohbatzadeh and H. Soltani, Time-dependent one-dimensional simulation of atmospheric dielectric barrier discharge in N2/O2/H2O using COMSOL Multiphysics, Journal of Theoretical and Applied Physics, vol. 12, no. 1, pp. 53-63, 2018.
[13] S. Das, G. Dalei, A. Barik, A dielectric barrier discharge (DBD) plasma reactor: An efficient tool to measure the sustainability of non -thermal plasmas through the electrical breakdown of gases, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, pp. 012004
[14] E. Poorreza and N. Dadashzadeh Gargari, Study of the Time Dependence and One Dimensional Simulation of a Dielectric Barrier Discharge Reactor Driven by Sinusoidal High-Frequency Voltage, Russ. J. Phys. Chem. B 17 (3) (2023). DOI:10.1134/S1990793123030107.