Mathematically modeling of target speed effect on nonlinearity in DTLMI-based nano-metrology system
Subject Areas : Journal of Optoelectronical NanostructuresSaeed Olyaee 1 , Masood Sherafat 2
1 - Nano-photonics and Optoelectronics Research Laboratory (NORLab),
Shahid Rajaee Teacher Training University, Lavizan, 16788-15811,
Tehran, Iran, *Tel/Fax: +98-21-22970030.
2 - Nano-photonics and Optoelectronics Research Laboratory (NORLab),
Shahid Rajaee Teacher Training University, Lavizan, 16788-15811,
Tehran, Iran, *Tel/Fax: +98-21-22970030.
Keywords: Developed Three-Longitudinal Mode Heterodyne Interferometer (DTLMI), Nonlinearity, Jones Matrix Calculations,
Abstract :
Jones matrix computation is one of the widely used methods in nonlinearity
calculation in laser interferometers. In this paper, the nonlinearity error in developed
three-longitudinal mode heterodyne interferometer (DTLMI) has been mathematically
modeled at various speeds, by using Jones matrix calculations. This review has been done
despite the fact that simultaneously the main factors including non-ideal polarization of
the laser beam and the non-ideal PBS produce nonlinearity. According to the results, it
was found that although nonlinearity error is a pure sinusoid in low velocities, it isn't a
single-sinus and increases in amplitude in high velocities. It was also observed that the
effect of non-ideal PBS on nonlinearity error is less than that of non-ideal laser beam and
frequency of nonlinearity error caused by it is twice more.
[1] M. L. Schattenburg and I. H. Smith. The critical role of metrology in nanotechnology. Proc. SPIE, 4608(1) (2002) 116-124.
Available:https://www.spiedigitallibrary.org/conference-proceedings-of-pie/4608/1
[2] F. C. Demarest. High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics. Meas. Sci. Technol. 9(7) (1998) 1024-1030.
Available: http://iopscience.iop.org/article/10.1088/0957-0233/9/7/003
[3] W. Estler, Tyler. High-accuracy displacement interferometry refin air. Appl. Opt. 24(6) (1985) 808-815.
Available: https://www.osapublishing.org/ao/abstract.cfm?uri=ao-24-6-808
[4] N. Bobroff, Norman. Recent advances in displacement measuring interferometry. Meas. Sci. Technol. 4(9) (1993) 907-926.
Available: http://iopscience.iop.org/article/10.1088/0957-0233/4/9/001
[5] W. Hou, and Günter Wilkening. Investigation and compensation of the nonlinearity of heterodyne interferometers. Precision Eng. 14(2) (1992) 91-98.
Available: https://www.sciencedirect.com/science/article/pii/014163599290054Z
[6] K. Chen, Jing-Heng Chen, Shen-Hua Lu, Wei-Yao Chang, and Chi-Chang Wu. Absolute distance measurement by using modified dual-wavelength heterodyne Michelson interferometer. Opt. Commun. 282(9) (2009) 1837-1840.
Available: https://www.sciencedirect.com/science/article/pii/S003040180900042X
[7] A. Rezaei, B. Azizollah-Ganji, and M. Gholipour. Effects of the channel length on the nanoscale field effect diode performance. J. Optoelectronical Nanostructures. 3(2) (2018) 29-39.
Available: http://jopn.miau.ac.ir/article_2862.html
[8] A. Ju, Chaoyang Zhong, and Wenmei Hou. The effect of laser source and PBS on the nonlinearity in heterodyne interferometer. Optik-International Journal for Light and Electron Optics. 126(1) (2015) 112-115.
Available: https://www.sciencedirect.com/science/article/pii/S0030402614011978
[9] H. Hu, and Juju Hu. Relations between nonlinearity and PBS in heterodyne Michelson interferometer with different optical structures. Optik-International Journal for Light and Electron Optics, 126(24) (2015) 5061-5066.
Available: https://www.sciencedirect.com/science/article/pii/S0030402615012036
[10] W. Hou. Optical parts and the nonlinearity in heterodyne interferometers. Precision Eng. 30(3) (2006) 337-346.
Available: https://www.sciencedirect.com/science/article/pii/S0141635905001637
[11] J. Guo, Yan Zhang, and Shuai Shen. Compensation of nonlinearity in a new optical heterodyne interferometer with doubled measurement resolution. Opt. Commun. 184(1) (2000) 49-55.
Available: https://www.sciencedirect.com/science/article/pii/S0030401800009342
[12] W. Hou, Yunbo Zhang, and Haijiang Hu. A simple technique for eliminating the nonlinearity of a heterodyne interferometer. Meas. Sci. Technol. 20(10) (2009). 105303.
Available: http://iopscience.iop.org/article/10.1088/0957-0233/20/10/105303/meta
[13] S. Olyaee, R. Ebrahimpour, and S. Hamedi. Modeling and compensation of periodic nonlinearity in two-mode interferometer using neural networks. IETE J. Research. 56(2) (2010). 102-110.
Available: https://www.tandfonline.com/doi/abs/10.4103/0377-2063.63085
[14] S. J. A. G. Cosijns, Han Haitjema, and P. H. J. Schellekens. Modeling and verifying non-linearities in heterodyne displacement interferometry. Precision Eng. 26(4) (2002) 448-455.
Available: https://www.sciencedirect.com/science/article/pii/S0141635902001502
[15] S. Olyaee, S., and S. Mohammad Nejad. Nonlinearity and frequency-path modelling of three-longitudinal-mode nanometric displacement measurement system. IET Optoelectron. 1(5) (2007). 211-220.
Available: https://ieeexplore.ieee.org/document/4312812/
[16] S. Olyaee, T. H. Yoon, and S. Hamedi. Jones matrix analysis of frequency mixing error in three-longitudinal-mode laser heterodyne interferometer. IET Optoelectron. 3(5) (2009) 215-224.
Available: https://ieeexplore.ieee.org/document/5235434/
[17] S. Olyaee, and S. Hamedi. A low-nonlinearity laser heterodyne interferometer with quadrupled resolution in the displacement measurement. Arab. J. Sci. Eng. 36(2) (2011) 279-286.
Available: https://link.springer.com/article/10.1007/s13369-010-0017-5
[18] S. Olyaee, S. Hamedi, and Z. Dashtban. Efficient performance of neural networks for nonlinearity error modeling of three-longitudinal-mode interferometer in nano-metrology system. Precision Eng. 36(3) (2012) 379-387.
Available: https://www.sciencedirect.com/science/article/pii/S0141635912000037
[19] M. Sherafat and S. Olyaee. A nonlinearity error compensation method in nano-metrology system based on developed three-longitudinal mode heterodyne interferometer. Int. J. Mechatronics Appl. Mechanics. 3 (2018) 60-65.
Available: https://ijomam.com/issue3
[20] S. Yokoyama, T. Yokoyama, and T. Araki. High-speed subnanometre interferometry using an improved three-mode heterodyne interferometer. Meas. Sci. Technol. 16(9) (2005) 1841-1847.
Available: http://iopscience.iop.org/article/10.1088/0957-0233/16/9/017