First–Principle Calculation of the Electronic and Optical Properties of Nanolayered ZnO Polymorphs by PBE and mBJ Density Functionals
Subject Areas : Journal of Optoelectronical Nanostructures
1 - Department of Physics, Rasht Branch, Islamic Azad University, Rasht, Iran
Keywords: DFT, Band Structure, ZnO polymorphs, effective mass, Optical Properties,
Abstract :
First principle calculations of nanolayered ZnO polymorphs (Wurzite–, Zinc
blende–, Rocksalt–structures) in the scheme of density functional theory were performed
with the help of full potential linear augmented plane wave (FP-LAPW) method. The
exchange - correlation potential is described by generalized gradient approximation as
proposed by Perdew–Burke–Ernzrhof (GGA–PBE) and modified Becke–Johnson (mBJ)
approximation. The electronic behavior and the optical properties of the structures are
investigated and compared to experimental data, where available. The electronic structure
of w–ZnO and z–ZnO revealed a 3.01 eV and 2.59 eV direct energy gap in (Γ→Γ)
direction by applying mBJ potential. In contrast to w– and z–ZnO the electronic structure
of r–ZnO shows an indirect 2.81 eV energy gap in (Γ→L) direction. Reflectivity,
transmittance and refractive index spectra for three nano layered of ZnO phases in Uv –
visible region have been calculated. The electron effective mass values at the bottom of
conduction band were evaluated for the three geometries.
[1] A. Abdolahzadeh Ziabari, S.M. Rozati, Carrier transport and bandgap shift in n-type degenerate ZnO thin films: The effect of band edge nonparabolicity. Physica B 407 (2012) 4512–4517.
http://www.sciencedirect.com/science/article/pii/S0921452612008071
[2] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. –J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98 (2005) 041301.
http://adsabs.harvard.edu/abs/2005JAP....98d1301
[3] J. Wróbel, J. Piechota, Structural properties of ZnO polymorphs. Phys. Stat. Sol. (b) 244(5) (2007) 1538–1543.
http://onlinelibrary.wiley.com/doi/10.1002/pssb.200743399/full
First–Principle Calculation of the Electronic and Optical Properties of Nanolayered ZnO … * 15
[4] C. H. Bates, W. B. White, R. Roy, New High-Pressure Polymorph of Zinc Oxide. Science 137 (1962) 993.
http://adsabs.harvard.edu/abs/1962Sci...137..993B
[5] F. G. Kuang, X.Y. Kuang, Sh.Y. Kang, M.M. Zhong, A.J. Mao, A first principle study of pressure-induced effects on phase transitions, band structures and elasticity of zinc oxide. Mat. Sci. Semicon. Proc. 23 (2014) 63–71.
https://www.infona.pl/resource/bwmeta1.element.elsevier-d025c885-9ca3-3a80-9b8c-c3e2004b4a24
[6] M. P. Molepo, D.P. Joubert, Computational study of the structural phases of ZnO. Phys. Rev. B 84 (2011) 094110.
https://journals.aps.org/prb/pdf/10.1103/PhysRevB.84.094110
[7] M. Kalay, H.H. Kart, S. Özdemir Kart, T. Çağın, Elastic properties and pressure induced transitions of ZnO polymorphs from first-principle calculations. J. Alloys. Compd.484 (2009) 431–438.
http://www.sciencedirect.com/science/article/pii/S0925838809008548
[8] X. Si, Y. Liu, W. Lei, J. Xu,W. Du, J. Lin, T. Zhou, L.I. Zheng, First-principles investigation on the optoelectronic performance of Mg doped and Mg–Al co-doped ZnO. Materials and Design 93 (2016) 128–132.
http://www.sciencedirect.com/science/article/pii/S0264127515308923
[9] A. A. Peyghan, M. Noei, The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies. B 432(2014) 105-110.
http://www.sciencedirect.com/science/article/pii/S0921452613006029
[10] H.I. Berrezoug, A.E. Merad, A. Zerga, Z.Sari Hassoun, Simulation and Modeling of Structural Stability, Electronic Structure and Optical Properties of ZnO. Energy Procedia 74 ( 2015 ) 1517–1524.
http://www.sciencedirect.com/science/article/pii/S1876610215014794
[11] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 100 (2008) 136406.
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.136406
[12] G.Y. Huang, C.Y. Wang, J.T. Wang, Detailed check of the LDA + U and GGA + U corrected method for defect calculations in wurtzite ZnO. Comput. Phys. Commun. 183 (2012) 1749–1752.
http://www.sciencedirect.com/science/article/pii/S0010465512001221?via%3Dihub
[13] A. D. Becke and E. R. Johnson, A simple effective potential for exchange. J. Chem. Phys. 124 (2006) 221101.
http://aip.scitation.org/doi/10.1063/1.2213970
[14] F. Tran, P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys Rev Lett 102 (2009) 226401.
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.226401
[15] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Austria, 2014.
http://susi.theochem.tuwien.ac.at/reg_user/textbooks/usersguide.pdf
[16] A. Thilagam, D. Simpson, A. Gerson, A first-principles study of the dielectric properties of TiO2polymorphs.J. Phys.: Condens. Matter 23 (2) (2011) 025901.
http://iopscience.iop.org/article/10.1088/0953-8984/23/2/025901/meta
[17] F.S. Decremp, F. Datchi, A.M. Saitta, A. Polian, S. Pascarelli, A. DiCicco, J.P. Itié, J,F. Baudelet, Local structure of condensed zinc oxide. Phys. Rev. B 68 (2003) 104101.
http://www-ext.impmc.upmc.fr/~decremps/SObject/Prb-5.pdf
[18] S. Desgreniers, Structural and compressive parameters High-density phases of ZnO. Phys. Rev. B 58 (1998) 14102–14105.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.58.14102
[19] H. Karzel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G.M. Kalvius, D.W. Mitchell, T.P. Das, P. Blaha, K. Schwarz, M.P. Pasternak, Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures. Phys. Rev. B 53 (1996) 11425–11438.
https://www.ncbi.nlm.nih.gov/pubmed/9982760
[20] A. Abdolahzadeh Ziabari, F.E. Ghodsi, Synthesis and characterization of nanocrystalline CdZnO thin films prepared by sol-gel dip-coating process. Thin Solid Films 520 (2011) 1228–1232.
http://www.sciencedirect.com/science/article/pii/S0040609011013526
[21] A.A. Ashrafi, A.Ueta, H. Kumano, I. Suemune, Role of ZnS buffer layers in growth of zincblende ZnO on GaAs substrates by metalorganic molecular-beam epitaxy. J. Cryst. Growth 221 (2000) 435–439.
http://www.sciencedirect.com/science/article/pii/S0022024800007326
[22] U.H. Bakhtiar, R.Ahmed, R. Khenata, M. Ahmed, R. Hussain, A first-principles comparative study of exchange and correlation potentials for ZnO. Mater. Sci. Semicon. Proc.16 (2013)1162–1169.
http://www.sciencedirect.com/science/article/pii/S1369800112002909
[23] M. Usuda, N. Hamada, All-electron GW Application to wurtzite ZnO calculation based on the LAPW method. Phys. Rev. B 66 (2002) 125101.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.66.125101
[24] A. Schleife, F. Fuchs, J. Furthmüller, F. Bechstedt, First-principles studies of ground- and excited-state properties of MgO, ZnO, and CdO polymorphs. Phys. Rev. B 73 (2006) 245212.
https://arxiv.org/abs/cond-mat/0604480
[25] Y.Z. Zhu, G.D. Chen, H. Ye, Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys. Phys. Rev. B 77 (2008) 245209.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.77.245209
[26] A. Segura, J.A. Sans, F.J. Manjon, A. Munoz, M.J. Herrera–Cabrera, Theoretical Study on the Origins of the Gap Bowing in MgxZn1–xO Alloys. Appl. Phys. Lett. 83 (2003) 278–280.
http://file.scirp.org/Html/3-2190016_21382.htm
[27] Y.N. Xu, W.Y. Ching, Electronic, optical, and structural properties of some wurtzite crystals. Phys. Rev. B 48 (1993) 4335–4351.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.48.4335
[28] C.-Y. Ren, S.-H. Chiou, C.-S. Hsue, Ga-doping effects on electronic and structural properties of wurtzite ZnO. Physica B 349 (2004) 136.
http://www.sciencedirect.com/science/article/pii/S0921452604002029
[29] M. Oshikiri, K. Tanehaka, T. Asano, G. Kido, Far-infrared cyclotron resonance of wide-gap semiconductors using pulsed high magnetic fields. Physica B 216 (1996) 351.
http://www.sciencedirect.com/science/article/pii/0921452695005153
[30] Z. Charifi, H. Baaziz, A.H. Reshak, Phys. Ab-initio investigation of structural, electronic and optical properties for three phases of ZnO compound. Status Solidi B 244 (2007) 3154–3167.
http://onlinelibrary.wiley.com/doi/10.1002/pssb.200642471
[31] J.E. Jaffe, R. Pandey, A.B. Kunz, Electronic structure of the rocksalt-structure semiconductors ZnO and CdO. Phys. Rev. B 43(17) (1991) 14030–14034.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.43.14030
[32] X. Si, Y. Liu,W. Lei, J. Xu,W. Du, J. Lin, T. Zhou, L. Zheng, First-principles investigation on the optoelectronic performance of Mg doped and Mg–Al co-doped ZnO. Mater. Des. 93 (2016) 128–132.
http://www.sciencedirect.com/science/article/pii/S0264127515308923
[33] E. Amoupour, A. Abdolahzadeh Ziabari, H. Andarva, F.E. Ghodsi, Influence of air/N2 treatment on the structural, morphological and optoelectronic traits of nanostructured ZnO:Mn thin films. Superlattices Microstruct. 65 (2014) 332–343.
http://www.sciencedirect.com/science/article/pii/S0749603613004096
[34] S. Zh. Karazhanov, P. Ravindran, A. Kjekshus, H. Fjellvåg, B. G. Svensson, Electronic structure and optical properties of ZnX (X=O, S, Se, Te). Phys. Rev. B 75 (2007) 155104.
https://arxiv.org/abs/0705.2550