Transient Trap-Limited Field Dependence charge carrier transport in organic semiconductors for time of flight configuration
Subject Areas : Journal of Optoelectronical Nanostructures
1 - Department of Basic Science, Farhangian University, Tehran. Iran
Keywords: organic semiconductors, charge transport, mobility, time of flight,
Abstract :
Organic semiconducting polymers are for use in
low cost electronics and photovoltaic application has
technological and scientific interest in organic materials. In
this paper we use the time of flight of a charge packet
injected by a voltage pulse to calculate the drift velocity
and mobility of holes. This technique is based on the
application of a voltage applied at the anode and
calculating the delay time in the appearance of the injected
carriers at the other contact. This method is a simple way
to determine the charge transport properties of the organic
semiconductors .The effect of charge trapping mechanism
on the carrier mobility in the organic layers are investigated
and we discussed the theory of a electronic method to
obtain the drift mobility of holes in an organic layer.
Finally time of flight calculations were done on organic
layers and it was observed that the mobility reduces at low
electric field.
[1] T.Kreouzis, D.Poplavskyy, S. Tuladhar, M.Campoy-Quiles,J.Nelson, A.J.Campbell, D.D.C.Bradley. Temperature and field dependence of hole mobility in poly(9,9-dioctylfluorene). Phys.Rev.B. [Online].73,235201(2006) 801-809. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.73.
[2] L. A. Majewski, R. Schroeder, M. Voigt, and M. Grell, Low voltage organic transistors on a polymer. J. Phys. D. [Online] . 37. 3367 (2004) 337-347. Available: https://doi.org/10.1088/0022-3727/37/24/003
[3] L. A. Majewski, R. Schroeder, M. Grell, P. A. Glarvey, and M. L. Turner, J. High capacitance organic field – effect transistors with modified gate insulator surface .Appl. Phys. [Online]. 96. 5781 (2009) 435–447. Available: https://doi.org/10.1063/1.1798401.
[4] S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, P.Heremans, Influence of the dielectric roughness on the performance of pentanene transistors. Appl. Phys. Lett. [Online]. 85.4400. (2004) 302-311. Available: https://doi.org/10.1063/1.1815042
[5] A. Mahmoudloo S. Ahmadi, Variable range hopping transport characteristics of the charge carriers in homogenous amorphous organic semiconductors. Optik. [Online].127, 3 (2016) 505- 513.
Available:https://www.sciencedirect.com/journal/optik/vol/127/issue/3
[6] M.Schrader, C. Körner,C. Elschner,D. Andrienko. Charge transport in amorphous and smectic oligothiophenes. J. Mater. Chem. [Online].22, 22258. (2012) 119-124. Available: DOI: 10.1039/C2JM34837C
[7] C. Liu, K. Huang , A unified understanding of charge transport in organic semiconductors the importance of attenuated delocalization for the carriers. Materials Horizons. [Online]. 4 (2017) 233-240.
Available: DOI: https://doi.org/10.1039/C7MH00091J
[8] A.Miller and E.Abraham, Impurity conduction of low concentrations. phys. Rev. [Online].120.745(1960)601-608.
Available: https://journals.aps.org/pr/abstract/10.1103/PhysRev.120.745
[9] Street, R. A, Northrup, J. E, Salleo, Transport in polycrystalline polymer thin film transistors. phy. Rev. B. [Online]. 71.16(2005)337-348.
Available:https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.165202
[10] S. E. Fritz, T. W. Kelley, and C. D. Frisbie, Effect of dielectric roughness on performance of pentacene TFTs with a polymeric smoothing layer. J. Phys. Chem.B.[Online]. 109.10574(2005)708-714.Available: https://doi.org/10.1021/jp044318f
[11] K. Shin, C. Yang, S. Y. Yang, H. Jeon, and C. E. Park, Effect of polymer gate dielectrice roughness on pentacene field-effect transistors. Appl. Phys. Lett. [Online]. 88.072109(2006) 351-362.
Available: https://doi.org/10.1063/1.2176858
[12] Andrey Yu, Sosorev, Simple charge transport model for efficient search of high-mobility organic semiconductor crystals. Materials & Design. [Online].192 (2020) 111-119.
Availlable:https://www.sciencedirect.com/journal/materials-and- design/vol/192/suppl/C
[13] M. Hasani , R. Chegell . Electronic and optical properties of the Graphene and Boron Nitride nanoribbons in presence of the electric field. Journal of Optoelectrical Nano Structuers[Online].5.2 (2020)49-64.
Available: http://jopn.miau.ac.ir/article_4218.html
[14] H. Salehi , P. Amiri, R. Zare. Ab-initio study of electronic, optical Dynamic and Thermoelectric properties of cusbx2 ( X= S, Se) compounds. Journal of Optoelectrical Nano Structuers. [Online]. 3.2.(2018) 53-64.
Available: http://jopn.miau.ac.ir/article_2864.html
[15] M. Yuonesi, Scattering mechanism of nonmagnetic phase on nano diluted magnetic semiconductors (DMS).Journal of Optoelectrical Nano Structuers, [Online]. 2.2. (2017) 19-28. Available: http://jopn.miau.ac.ir/article_2421.html
[16] H.Faezinia, M.Zavvari , Quantum modeling of light absorption in graphene based photo–transistors. Journal of Optoelectrical Nano Structuers, [Online]. 1.1. (2017) 9-20. Available: http://jopn.miau.ac.ir/article_2196.html
[17] M. Jafari, Electronic transmission wave function of disordered graphene by direct method and green function method. Journal of Optoelectrical Nano Structuers. [Online].2. 2. (2016) 57-68.
Available: http://jopn.miau.ac.ir/article_2049.html
[18] A.Melianas, V. Pranculis, Charge Transport in pure and Mixed Phases in Organic solar cells. Advanced Energy Materials. [Online]. 7.20.(2017) 317- 328. Available: https://doi.org/10.1002/aenm.201700888
[19] P.Yin, Z. Yin, Improving the charge transport of the ternary blend active layer for efficiency semitransparent organic solar cells. Energy & Environmental Sience. [Online]. 13. (2020) 5177- 5185.
Available: https://doi.org/10.1039/D0EE03378B
[20] D. Li, L. Zhu, Enhanced and Balanced Charge transport Boosting Ternary solar cells over 17% Efficiency. Advanced Materials. [Online].32.34. (2020) 3001- 3010 Available: https://doi.org/10.1002/adma.202002344