Electrical characterization of zig-zag Aluminum thin films using experimental and theoretical methods
Subject Areas :
Journal of Optoelectronical Nanostructures
Mahsa Fakharpour
1
,
Maryam Gholizadeh Arashti
2
,
Mohammad Taghi Musazade Meybodi
3
1 - Department of Physics, Maybod Branch, Islamic Azad University, Maybod, Iran
2 - Department of Physics, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch,
Islamic Azad University, Tehran, Iran
3 - Department of Electrical Engineering, Science and Art University, Yazd, Iran
Received: 2021-02-26
Accepted : 2021-11-24
Published : 2021-08-01
Keywords:
Anisotropy,
Electrical characterization,
Perturbation theory,
Zig-zag Aluminum thin films,
Perturbation Method,
Abstract :
Zig-zag Al nanostructures were fabricated on the glass and steel using thermal evaporation technique. The structural, morphology and electrical properties of Al thin films were studied by using AFM, FESEM and four-point probe instrument. FESEM analysis showed that the grains are distributed on the zig-zag Al-glass and their shape is polygonal while the grains on the zig-zag Al-steel surface have a non-uniform distribution and the shape of the grains is oval. AFM analysis indicated the surface roughness of zig-zag Al-steel nanostructures is more than the zig-zag Al-glass. Moreover, the wrinkles on the zig-zag Al-steel and the small protuberances on the zig-zag Al-glass observed. The anisotropy of electrical was performed in two perpendicular directions x and y of the samples surface. The average electrical resistivity of the zig-zag Al films on glass and steel produced were obtained about 4.69×10-8 and 5.85×10-8 Ω.m, respectively. Simulation results by the perturbation method agree with the experimental results.
References:
M. Hawkeye, M. J. Brett. Glancing angle deposition: fabrication, properties, and applications of micro-and nanostructured thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 25(5) (2007, Sep) 1317-1335. Available: https://doi.org/10.1116/1.2764082.
Yahyazadeh, Z. Hashempour, Numerical Modeling of Electronic and Electrical Characteristics of 0.3 0.7 Al Ga N/GaN Multiple Quantum Well Solar Cells. Journal of Optoelectronical Nanostructures. 5(3) (2020, Sep) 81-102. Available: 20.1001.1.24237361.2020.5.3.6.5.
Rafiee Rafat, Z. Ahangari, M. M. Ahadian. Performance Investigation of a Perovskite Solar Cell with TiO2 and One Dimensional ZnO Nanorods as Electron Transport Layers. Journal of Optoelectronical Nanostructures. 6(2) (2021, Jun) 75-90. Available: https://doi:10.30495/JOPN.2021.28208.1224.
Lintymer, J. Gavoille, N. Martin, J. Takadoum. Glancing angle deposition to modify microstructure and properties of sputter deposited chromium thin films. Surface and Coatings Technology. 174(1) (2003, Sep) 316-323. Available: https://doi.org/10.1016/S0257-8972(03)00413-4.
Vick, M. Brett. Conduction anisotropy in porous thin films with chevron microstructures. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 24(1) (2006, Jan) 156-164. Available: https://doi:10.1116/1.2148413.
Kuwahara, S. Shinzato. Resistivity anisotropy of nickel films induced by oblique incidence sputter deposition. Thin Solid Films. 164(1) (1988, Oct) 165-168. Available: https://doi.org/10.1016/0040-6090(88)90128-9
Okamoto, K. Itoh. Incidence angle dependences of columnar grain structure and texture in obliquely deposited iron films. Japanese journal of applied physics. 44(3R) (2005, Mar) 1382. Available: https://doi.org/10.1143/JJAP.44.1382.
A. Badshah, D. Michel, N.E. Alam, I. Madni, N. Abbas, K. Alameh, Seok min Kim. Enhancing the Sensitivity of a Surface Plasmon Resonance Sensor with Glancing Angle Deposited Nanostructures. Plasmonics. 15(6) (2020, Dec) 2161-2168. Available: https://doi.org/10.1007/s11468-020-01245-0.
Moftakharzadeh, B. Afkhami Aghda, M. Hosseini. Noise Equivalent Power Optimization of Graphene-Superconductor Optical Sensors in the Current Bias Mode. Journal of Optoelectronical Nanostructures. 3(3) (2018, Sep) 1-12. Available: 20.1001.1.24237361.2018.3.3.1.6.
Fallahi, M. Seifouri. Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical telecommunication devices. Journal of Optoelectronical Nanostructures. 4(2) (2019, Jun) 53-68. Available: 20.1001.1.24237361.2019.4.2.5.5.
Gholizadeh, R. Z. Moghadam, A. Mohammadi, M. Ehsani, H. R. Dizaji. Design and fabrication of MgF2 sinle-layer antireflection coating by glancing angle deposition. Materials Research Innovations. 24(7) (2020, Nov) 442-446. Available: https://doi.org/10.1080/14328917.2020.1723991.
Ruder, B. Wright, D. Peev, R. Feder, U. Kilic, M. Hilfiker. Mueller matrix ellipsometer using dual continuously rotating anisotropic mirrors. Optics Letters. 45(13) (2020, Jul) 3541-3544. Available: https://doi.org/10.1364/OL.398060.
Tolenis, L. Grineviciute, A. Melninkaitis, R. Buzelis. High Reflectivity Coatings based on Sculptured Thin Films. Optical Interference Coatings; (2019, Jun) MD-3. Available: https://doi.org/10.1364/OIC.2019.MD.3.
Bairagi, K. Järrendahl, F. Eriksson, L. Hultman, J. Birch, C. L. Hsiao. Glancing Angle Deposition and Growth Mechanism of Inclined AlN Nanostructures Using Reactive Magnetron Sputtering. Coatings. 10(8) (2020, Aug) 768. Available: https://doi.org/10.3390/coatings10080768.
W. Jung. Investigating Thermo-Fluidic Performance of Si-Based Embedded Microchannels-3D Manifold Cooling System for High Power Density Electronic Applications, Stanford University, ProQuest Dissertations Publishing, 2020. 28104043. Available: https://stacks.stanford.edu/file/druid:zb171kw6421/PhD_Thesis-KiWookJung-final-augmented.pdf.
Hori, F. Yonezawa. Theoretical approaches to inhomogeneous transport in disordered media. Journal of Physics C: Solid State Physics. 10(2) (1977, Jan) 229. Available: https://doi.org/10.1088/0022-3719/10/2/009.
D, Jackson, Classical Electrodynamiccs, 3nd ed. New York: Wiley, 1999. https://doi.org/10.1119/1.19136.
Gholizadeh Arashti, M. Fakharpour. Fabrication and characterization of Al/glass zig-zag thin film, comparing to the discrete dipole approximation results. European Physical Journal B--Condensed Matter. 93(5) (2020, May) 1-6. Available: https://doi.org/10.1140/epjb/e2020-100581-0.
Fakharpour, G. Taheri. Fabrication of Al zigzag thin films and evaluation of mechanical and hydrophobic properties. Applied Physics A. 126(8) (2020, July) 1-8. Available: https://doi.org/10.1007/s00339-020-03773-2.
Manouchehri, J. Zahmatkesh, M. H. Yousefi. Substrate effects on the structural properties of thin films of lead sulfide. Journal of Optoelectronical Nanostructures. 3(2) (2018, Jun) 1-18. Available: 20.1001.1.24237361.2018.3.2.1.4.
Khachatryan, S. N. Lee, K. B. Kim, H. K. Kim, M. Kim. Al thin film: The effect of substrate type on Al film formation and morphology. Journal of Physics and Chemistry of Solids. 122 (2018, Nov) 109-117. Available: https://doi.org/10.1016/j.jpcs.2018.06.018.
L. Chopra, Thin film phenomena, Journal of The Electrochemical Society. 117(5) (1970, May) 180Cb. Available: https://doi.org/10.1149/1.2407581.
Campbell. Handbook of Thin Film Technology (LI Maissel and R. Glang, eds.), New York: McGraw-Hill Book Co,1970, p (12-1) - (12-50). Available: https://doi.org/10.1117/12.559785
Savaloni, F. Babaei, S. Song, F. Placido. Influence of substrate rotation speed on the nanostructure of sculptured Cu thin films. Vacuum. 85(7) (2011, Jan) 776-781. Available: https://doi.org/10.1016/ j. vacuum.2010.11.017.
Kaye, T. Laby, Tables of physical and chemical constants. Essex, England. New York: Longman; Print book, English, 16th ed, 1995. Available: https://doi.org/10.1002/jctb.5000554445.
Qiu, F. Wang, P. Wu, L. Pan, L. Li, L. Xiong. Effect of deposition rate on structural and electrical properties of Al films deposited on glass by electron beam evaporation. Thin Solid Films. 414(1) (2002, Jul) 150-153. Available: https://doi.org/10.1016/S0040-6090(02)00454-6.
P. Panta, D. P. Subedi. Electrical characterization of aluminum (Al) thin films measured by using four-point probe method. Kathmandu University journal of science, Engineering and technology. 8(2) (2012, Dec) 31-36. Available: https://doi.org/10.3126/KUSET.V8I2.7322.
Barna, P. Barna, G. Radnoczi, F. Reicha, L. Toth. Formation of aluminium thin films in the presence of oxygen and nickel. Physica status solidi (a). 55(2) (1979, Oct) 427-435. Available: https://doi.org/10. 1002/pssa.2210550210.
Reicha, M. El. Hiti, P. Barna. Electrical properties of thin oxidized aluminium films. Journal of materials science. 26(8) (1991, Apr) 2007-2014. Available: https://doi.org/10.1007/BF00549159.
Siabi-Garjan, H. Savaloni. Extinction spectra and electric near-field distribution of Mn nano-rod based sculptured thin films: experimental and discrete dipole approximation results. Plasmonics. 10(4)) 2015, Aug) 861-872. Available: https://doi.org/10.1007/s11468-014-9873-2.
Fakharpour, H. Savaloni. Fabrication of graded helical square tower-like Mn sculptured thin films and investigation of their electrical properties: comparison with perturbation theory. Journal of Theoretical and Applied Physics. 11(2) (2017, Jun) 109-117. Available: https://doi.org/10.1007/s40094-017-0242-3.