Time Response of a Resonant Tunneling Diode Based Photo- Detector (RTD-PD)
Subject Areas : Journal of Optoelectronical NanostructuresMohamad Ahmadzadeh 1 , Abbas Ghadimi 2 * , Seyed Ali Sedigh Ziabari 3
1 - Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran
2 - Department of Electrical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
3 - Department of Electrical Engineering, Rasht Branch,
Islamic Azad University, Rasht, Iran
Keywords: Quantum well, Absorption Layer, Time Response, Non-Equilibrium Green’s Function (NEGF),
Abstract :
در این مقاله ، یک دیود تونل زنی تشدید با
ساختار سد مضاعف AlAs / GaAs با استفاده از عملکرد سبز غیر تعادلی شبیه سازی شده است. یک
لایه جذب InGaAs منطبق شده برای تشخیص نور در طول موج λ = 600
نانومتر به دستگاه اضافه می شود . میدان الکتریکی از طریق دستگاه و مشخصات نمودار باند انرژی ارائه شده است.
جریان عکس دستگاه و منحنی های جریان جریان منبع در مقابل شدت نور
مقایسه می شوند . در دمای اتاق ، بازده کوانتومی 95/0 برای
دستگاه بدست آمد . پاسخ زمان گذرا دستگاه به دست آمد و وابستگی آن به
پارامترهای ساختاری (ضخامت لایه جذب ، ضخامت کلکتور و انتشار دهنده و
دوپینگ مخاطبین) ، شدت نور ، زاویه نور ساطع شده و سوگیری ولتاژ
شبیه سازی شده و تأثیر آنها بر عملکرد دستگاه مورد تجزیه و تحلیل قرار گرفت. پهنای باند
دستگاه به دست آمد. نتایج شبیه سازی نشان می دهد که وقتی بایاس ولتاژ افزایش یابد ،
زمان افتادن کاهش می یابد و پاسخ دستگاه سریعتر است. با تغییر ضخامت
لایه جذب و مخاطب ، پاسخ زمان RTD-PD تغییر می کند. تغییرات
دوپینگ در لایه های تماس بر روی پهنای باند تأثیر می گذارد. نتیجه نشان می دهد که تغییرات
شدت نور و زاویه نور ساطع شده ، پاسخ زمان گذرا را تغییر می دهند.
[1] Granastein, V. L. Physical Principles of Wireless Communications; CRC Press: Boca Raton, FL, USA, 2012; pp. 171–201.
[2] M. Sauer, A. Kobyakov, J. George. Radio over fiber for Pico cellular network architectures. J. Lightware Technol. 25, 2007, 3301–3320.
[3] N.J. Gomes, M.Morant, A. Alphones, B.Cabon, J.E.Mitchell, C.Lethien, M. Csornyei, A.Stohr, S.Iezekiel. Radio-over-fiber transport for the support of wireless broadband services. J. Opt. Netw. 8, 2009,156–178.
[4] S. Salimi, H.Rasooli Saghai. Impressive Reduction of Dark Current in InSb Infrared Photodetector to achieve High Temperature Performance. Journal of optoelectronical nanostructures, Vol.3, No.4, (2018), 81-96.
[5] M. Klemm, M.; J.A. Leendertz, D.Gibbons, I.J.Craddock, A.Preece, R.Benjamin. Microwave radar-based breast cancer detection: Imaging in inhomogeneous breast phantoms. IEEE Ant. Wirel. Propag.Lett. 8, 2009, 1349–1352.
[6] Haidong Lu, Bin Zhang, Fangmin Guo. The Photocurrent-Voltage characteristic simulated of resonant tunneling photodiodes. Optical and Quantum Electronics (2016). Available: http://doi.org/10.1007/s11082-016-0373-9
[7] Scott Watson, Weikang Zhang, Joana tavarez, Jose Fgueiredo, H. Canta, Jue Wang, Edward wasige, Henrique Salgado, Luis Pessoa and Antohony Kelly. Resonant tunneling photodetectors for optical communications. Microwaveand Optical Technology Letters (2019). Available: https://doi.org/10.1002/mop.31689.
[8] Micheal Feginov. Frequency Limitations of Resonant-Tunneling Diodes in Sub-THz and THz Oscillators and Detectors. Journal of infrared, millimeter, and terahertz waves, vol.40, (2019), 365-394.
[9] Bruno Romeria, LM Pessoa, H.M. Salgad, C.N. Ironside and Jose M.L Figueiredo. photo detectors Integrated with resonant tunneling diode. Sensors, vol.13, (2013), 9464-9482.
[10] Rania Mohammad Abdallah, Ahmed Ahmed S. Dessouki M. Hussein Aly. The Resonant Tunneling Diode Characterization for high frequency Communication Systems. Microelectronic Journal, vol.75, (2018), 1-14.
[11] Saad G Muttlac, Omar S. Abdulwahid, J Sextor, Michael J. Kelly and Mohamed Missous. InGaAs/AlAs Resonal Tunneling diodes for THZ Application. IEE Journal of the Electron Devices Society, Vol.6, (2018), 254-262.
[12] Xiang yang shi, Yuan yuan Wu, Ding Wang, Juan Su, Jie Liu, Wen Xian Yang, Meng Xiao and Jian Zhang. Enhancing power density of strained In0/8Ga0/2As/AlAs RTD for tera hertz radiation by optimizing emitter
Time Response of a Resonant Tunneling Diode Based Photo- Detector (RTD-PD) * 57
spacer layer thickness. Supper lattices and Micro Structures, vol.12, (2017), 435-441.
[13] Man Mohan singh and M.J. siddigui. Electrical characterization of triple barrier GaAs/AlGaAs RTD with dependence of operating temperature and barrier lengths. Material science in semiconductor processing, vol.58, (2017), 89-95.
[14] Shofa Abdullah Almansour and Dakhlaoui Hassan. Resonant tunneling diode Photodetector operating at near infrared wavelength with high responsivity. Optics and Photonics Journal, vol.4, (2014), 39-45.
[15] Andreas pfenning, F. Hartman, F. langer, Martin kanp, Sven Hofling and f. Lukas worschech. Sensevity of resonant tunneling diode photodectors. Nano technology, vol. 27, No. 35, (2016), 1-9.
[16] Y Dong, Guanglong Wang, Haiqiao Ni, Jianhui Chen, Fengqi Gao, Baochen Li, Kangming Pei and Zhichuan Niu. Resonance Tunneling Diode Photodetector with non-constant responsivity. Optic communications, vol.335, (2015), 274-278.
[17] Andreas Pfenning, Fabian Hartmann, Mariama Rebello Sousa Dias, Fabian Langer, Martin Kamp, Leonardo Kleber Castelano, Victor Lopez-Richard, Gilmar Eugenio Marques, Sven Höfling, and Lukas Worschech. Photocurrent-voltage relation of resonant tunneling diode photodetectors. Applied Physics Letters.107, (2015), 081104.
[18] Yu Dong, Jianxing Xu, Guanglong Wang, Haiqiao Ni, Kangming Pei, Jianhui Chen, Fengqi Gao, Baochen Li and Zhichuan Niu. Resonant tunneling diode Photodetector operating at near infrared wavelength with high responsivity. Electronic Letters, Vol.51, No.17, (2015), 1355-1357.
[19] Andreas pfenning, F. Hartman, F. langer, Sven Hofling and Martin Kamp.: Cavity enhanced RTD-PD telecommunication wavelength. Applied Physics.letters.104, (2014), 101109.
[20] Yo Dong, Gauglong wang, Hiqiao Ni, Jianhui Chen, Fengqi Gau, Zhongtao Qiao and Zhichuan Niu. Resonant tunneling diode with a multiplication region for light detection. Optics communications, Vol.331, (2014), 94-97.
[21] F. Hartmann, F.Langer, D.Bisping, .Musterer, S.Höfling, M.Kamp,
A.Forchel and Worschech. GaAs/AlGaAs resonant tunneling diodes with a GaInNAs absorption layer for telecommunication light sensing Appl.Phys, Lett.100, (2012), 172113.
[22] H.W. Li, B.E. Kardyna, P. See, A.J. Shields, P. Simmonds, H.E. Beere and D.A. Ritchie. Quantum dot RTD for telecommunication wavelength single photon detector. Appl. Phys. Lett. 91, (2007), 073516.
[23] W. Zhang, Scott Watson, Jose Figueiredo, Jue Wang, H. Cantu, J.Tavarez, L.Pessoa, A.Khalid, H.Salgado, E.Wasige and A.E.Kelly. Optical direct
58 * Journal of Optoelectronical Nanostructures Winter 2021 / Vol. 6, No. 1
intensity modulation of a 79GHz resonant tunneling diode-photodetector oscillator. Optics Express, Vol.27, No.12, (2019), 16791-16797.
[24] Junzhe zheng et al. Quantitative Multi‐Scale, Multi‐Physics Quantum Transport Modeling of GaN‐Based Light Emitting Diodes. Physica status solidi, Vol.215, No.9, (2017).
[25] K.C. Wang, R.Grassi,Y.Chu, S.Hari, J.Geng. Introduction of Multi-Particle Probes – Bridging between Drift Diffusion and Quantum Transport. arXiv:2001.04391v1, physics.app-ph, (2020).
[26] U. Aeberhard. Challenges in the NEGF Simulation of Quantum-Well Photovoltaics Posed by Non-Locality and Localization. Physica status solidi, Vol.256, No.7, (2019).
[27] T. martin, P.Dixon. InGaAs sees infrared and visible light. Laser focus, Vol.40, No.11, (2004), 109-111.
[28] J. Zou, D.J.H. Cockyan and B.F. Usher. Misfit dislocation and critical thickness in InGaAs/GaAs heterostructure systems. Journal of Applied Physics, Vol.73, No.619, (1993).
[29] Mohammad Hasani, Raad Chegell. Electronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field. Journal of optoelectronical nanostructures, Vol.5, Issue.2, (2020), 49-64.
[30] Hamid Faezinia, Mahdi zavvari. Quantum modeling of light absorption in graphene based photo- transistor. Journal of optoelectronical nanostructures, Vol.2, No.1, (2017), 9-20.
[31] Atlas, www.silvaco.com, (2016).
[32] M.M. Singh, M.J. Siddiqui, A.Saxena. Effect of Si-delta doping of barrier lengths on performance of triple barrier GaAs/AlGaAs RTD. IEEE international conference on electron devices and Solid-state circuits, (2016), 581-587.