بیوکامپوزیت مغناطیسی هالویسایت - نانوکیتین عاملدار شده برای حذف سرب (II) از محیطهای آبی: سنتز، سینتیک و آنالیز ترمودینامیکی
محورهای موضوعی : آلودگی های محیط زیستالهه ناصرنصیر 1 , حسین پرورش 2 , فاطمه السادات محسنی شهری 3 * , فرید معین پور 4 , محسن دهقانی قناتغستانی 5
1 - گروه مهندسی محیط زیست، واحد بندر عباس، دانشگاه آزاداسلامی، بندر عباس، ایران
2 - گروه مهندسی محیط زیست، واحد بندر عباس، دانشگاه آزاداسلامی، بندر عباس، ایران
3 - گروه شیمی، واحد بندر عباس، دانشگاه آزاداسلامی، بندر عباس، ایران
4 - گروه شیمی، واحد بندر عباس، دانشگاه آزاداسلامی، بندر عباس، ایران
5 - گروه مهندسی محیط زیست، واحد بندر عباس، دانشگاه آزاداسلامی، بندر عباس، ایران
کلید واژه: NiFe₂O₄-HNT-Chitin , نانوکامپوزیت مغناطیسی, جذب سطحی, جذب یون سرب (II),
چکیده مقاله :
مقدمه: آلودگی آب به یونهای سرب (II) به دلیل سمیت شدید و آثار جبرانناپذیر بر سلامت انسان، بهویژه بر سیستم عصبی، یکی از چالشهای مهم زیستمحیطی است. این پژوهش با هدف توسعه جاذبی کارآمد، زیستسازگار و قابل بازیافت، به سنتز و ارزیابی یک بیوکامپوزیت مغناطیسی نوین بر پایه نانولولههای هالویسایت و کیتین عاملدارشده با فریت نیکل (NiFe₂O₄-HNT-Chitin) برای حذف Pb(II) از محلولهای آبی پرداخته است. استفاده از هالویسایت و کیتین بهدلیل فراوانی، هزینه پایین و زیستسازگاری، همراه با افزودن خاصیت مغناطیسی و گروههای عاملی، عملکرد جذب و قابلیت جداسازی جاذب را بهبود بخشید.
مواد و روشها: در روش کار، ابتدا هالویسایت با اسید هیدروکلریک اصلاح و با فریت نیکل پوشش داده شد. عاملدار کردن هالویسایت و کیتین بهترتیب با APTES و CPTES انجام گرفت و محصول نهایی با تکنیکهای FT-IR، XRD، SEM، TEM، BET، EDS و VSM شناسایی شد. عملکرد جذب در آزمایشهای ناپیوسته و در شرایط مختلف pH، زمان تماس، دوز جاذب، غلظت اولیه Pb(II)، قدرت یونی و دما بررسی گردید. دادهها با مدلهای سینتیکی، ایزوترمی و ترمودینامیکی تحلیل شدند.
نتایج و بحث: نتایج FT-IR و XRD تأیید کردند که NiFe₂O₄ و گروههای عاملی بهطور موفق بر ساختار هالویسایت و کیتین تثبیت شدهاند. تصاویر میکروسکوپی نشان دادند که نانولولهها با ذرات فریت نیکل و کیتین پوشیده شده و مساحت سطح BET برابر m²/g 33/81 حاصل گردید. این جاذب در شرایط بهینه (pH=6، دوز g/100 mL 05/0، دمایC ∘25) ظرف 10 دقیقه به تعادل رسیده و ظرفیت جذب حداکثری N=3, p<0.05) mg/g) 12/5 ± 370/37 را نشان داد. تحلیل دادهها بیانگر تطابق کامل با مدل شبه مرتبه دوم (R²=0.999) و ایزوترم لانگمویر (R²=0.996) و ماهیت جذب تکلایه شیمیایی بود.
اختلاف بین مدلها از نظر آماری معنیدار بود (p < 0.05). بررسی ترمودینامیکی نشان داد فرآیند گرمازا، خود بهخودی و همراه با کاهش بینظمی سطحی است. جاذب پس از چهار چرخه جذب-واجذب، کارایی بالای خود را حفظ کرد و کاهش راندمان در چرخه چهارم نسبت به چرخه اول از نظر آماری معنیدار نبود. (p > 0.05).
نتیجهگیری: کامپوزیت NiFe₂O₄-HNT-Chitin با ترکیب مزایای ساختار لولهای هالویسایت، گروههای عاملی کیتین و خاصیت مغناطیسی NiFe₂O₄، جاذبی سبز، سریعالعمل، پایدار و قابل بازیافت برای حذف Pb(II) از آب محسوب میشود.
Introduction: Water contamination with lead(II) ions poses a severe environmental and public health risk due to their high toxicity and irreversible effects, particularly on the nervous system. This study reports the synthesis and evaluation of a novel magnetic biocomposite based on halloysite nanotubes and chitin functionalized with nickel ferrite (NiFe₂O₄-HNT-Chitin) for the removal of Pb(II) from aqueous solutions. Halloysite and chitin were selected for their abundance, low cost, and biocompatibility, while surface functionalization and magnetic modification were employed to enhance adsorption performance and facilitate adsorbent recovery.
Materials and Methods: The synthesis involved acid activation of HNT, coating with NiFe₂O₄, and functionalization of HNT and chitin with APTES and CPTES, respectively, to obtain the NiFe₂O₄-HNT-Chitin composite. Structural and morphological features were characterized using FT-IR, XRD, SEM, TEM, BET, EDS, and VSM. Batch adsorption experiments investigated the effects of pH, contact time, adsorbent dose, initial Pb(II) concentration, ionic strength, and temperature. Kinetic, isotherm, and thermodynamic analyses were performed.
Results and Discussion: FT-IR and XRD confirmed the successful incorporation of NiFe₂O₄ and functional groups onto HNT and chitin. SEM and TEM images revealed NiFe₂O₄ and chitin coatings on nanotube surfaces, yielding a rough texture with a BET surface area of 81.33m²/g. Under optimal conditions (pH6, 0.05 g/100mL, 25 °C), equilibrium was achieved within 10 min, with a maximum adsorption capacity of 370.37 ± 5.12 (n=3, p<0.05) mg/g. The adsorption kinetics followed the pseudo-second-order model (R²=0.999), and the isotherm data fit well to the Langmuir model (R²=0.996), indicating monolayer chemisorption. The difference between the models was statistically significant (p<0.05). Thermodynamic analysis showed the process to be exothermic, spontaneous, and accompanied by decreased surface disorder (ΔH=–117.9kJ/mol, negative ΔG). Higher ionic strength negatively affected removal efficiency. The adsorbent maintained its high efficiency after four adsorption-desorption cycles, and the decrease in efficiency in the fourth cycle compared to the first cycle was not statistically significant (p> 0.05).
Conclusion: In conclusion, the NiFe₂O₄-HNT-Chitin composite, combining the tubular structure of halloysite, the functional groups of chitin, and the magnetic properties of NiFe2O4, represents a green, efficient, and magnetically recoverable adsorbent for Pb(II) removal from water. Its high adsorption capacity, rapid equilibrium, durability over multiple cycles, and ease of separation make it a promising candidate for practical applications in the treatment of heavy-metal-contaminated water.
[1] Edition Fourth. Guidelines for drinking-water quality. WHO chronicle, 2011; 38(4): 104-8.
[2] Hassan AF, Alafid F, Hrdina R. Preparation of melamine formaldehyde/nanozeolite Y composite based on nanosilica extracted from rice husks by sol–gel method: adsorption of lead (II) ion. Journal of Sol-Gel Science and Technology, 2020; 95: 211-222. doi.org/10.1007/s10971-020-05295-y.
[3] Ahmed GHG, et al. High-performance copper terephthalic acid metal-organic framework/gum Arabic/carrageenan composite beads for efficient lead (II) removal from aqueous solutions. International Journal of Biological Macromolecules, 2024; 282: 137448. doi.org/10.1016/j.ijbiomac.2024.137448.
[4] Jadoun S, et al. A review on adsorption of heavy metals from wastewater using conducting polymer-based materials. Journal of Environmental Chemical Engineering, 2023; 11(1): 109226. doi.org/10.1016/j.jece.2022.109226.
[5] Jiang H, Wu S, Zhou J. Preparation and modification of nanocellulose and its application to heavy metal adsorption: A review. International Journal of Biological Macromolecules, 2023; 236: 123916. doi.org/10.1016/j.ijbiomac.2023.123916.
[6] Wu S, et al. Development of L-Met functionalized cellulose nanofiber for an efficient removal of Pb2+ from aqueous solution: Characterization, adsorption behavior, DFT calculations and physiochemical mechanism. International Journal of Biological Macromolecules, 2024; 139180. doi.org/10.1016/j.ijbiomac.2024.139180.
[7] Tovar GI, et al. Chitin/Metal‐Organic Framework Composites as Wide‐Range Adsorbent. ChemSusChem, 2021; 14(14): 2892-2901. doi.org/10.1002/cssc.202100675.
[8] Zandi-Mehri E, et al. Designing of hydroxyl terminated triazine-based dendritic polymer/halloysite nanotube as an efficient nano-adsorbent for the rapid removal of Pb (II) from aqueous media. Journal of Molecular Liquids, 2022; 360: 119407. doi.org/10.1016/j.molliq.2022.119407.
[9] Massaro M, et al. Halloysite nanotubes as support for metal-based catalysts. Journal of Materials Chemistry A, 2017; 5(26): 13276-13293. doi.org/10.1039/C7TA02996A.
[10] Jiang Z, et al. Recent advances of halloysite nanotubes in biomedical applications. Small, 2024; 20(2): 2306169. doi.org/10.1002/smll.202306169.
[11] Jayakumar R, et al. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydrate polymers, 2010; 82(2): 227-232. doi.org/10.1016/j.carbpol.2010.04.074.
[12] Sadjadi,S, et al. Composite of MOF and chitin as an efficient catalyst for photodegradation of organic dyes. International Journal of Biological Macromolecules, 2021; 182: 524-533. doi.org/10.1016/j.ijbiomac.2021.04.034.
[13] Nisha A, Bhardwaj R, Verma M, Acharya A. Functionalized nanoclays in bioactive materials. Composite Interfaces, 2024; 31(7): 857-881. doi.org/10.1080/09276440.2023.2291591.
[14] Liu M, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in polymer science, 2014; 39(8): 1498-1525. doi.org/10.1016/j.progpolymsci.2014.04.004.
[15] Gil A. et al. A review of organic-inorganic hybrid clay based adsorbents for contaminants removal: Synthesis, perspectives and applications. Journal of Environmental Chemical Engineering, 2021; 9(5): 105808. doi.org/10.1016/j.jece.2021.105808.
[16] Sheldon RA. Metrics of green chemistry and sustainability: past, present, and future. ACS Sustainable Chemistry & Engineering, 2018; 6(1): p. 32-48. doi.org/10.1021/acssuschemeng.7b03505.
[17] Anastas PT, Zimmerman JB. The periodic table of the elements of green and sustainable chemistry. Green Chemistry, 2019; 21(24): 6545-6566. doi.org/10.1039/C9GC01293A.
[18] Gumsel E, Bulut S, Okur M. Investigation of adsorption potential of acid violet 90 dye with chitosan/halloysite/boron nitride composite materials. International Journal of Biological Macromolecules, 2024; 264 130531. doi.org/10.1016/j.ijbiomac.2024.130531.
[19] Pinto M, et al. Application of magnetic nanoparticles for water purification. Environmental Advances, 2020; 2: 100010. doi.org/10.1016/j.envadv.2020.100010.
[20] Wang M, You XY. Critical review of magnetic polysaccharide-based adsorbents for water treatment: Synthesis, application and regeneration. Journal of Cleaner Production, 2021; 323: 129118. doi.org/10.1016/j.jclepro.2021.129118.
[21] Mary BCJ, et al. Adsorption ability of aqueous lead (II) by NiFe2O4 and 2D-rGO decorated NiFe2O4 nanocomposite. Journal of Materials Science: Materials in Electronics, 2023; 34(9): 845. doi.org/10.1007/s10854-023-10237-9.
[22] Pirhaji JZ, et al. Synthesis and characterization of halloysite/graphene quantum dots magnetic nanocomposite as a new adsorbent for Pb (II) removal from water. Journal of Molecular Liquids, 2020; 300: 112345. doi.org/10.1016/j.molliq.2019.112345.
[23] Maensiri S, et al. A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scripta materialia, 2007; 56(9): 797-800. doi.org/10.1016/j.scriptamat.2006.09.033.
[24] Isfahani AL, et al. Palladium nanoparticles immobilized on nano‐silica triazine dendritic polymer (Pdnp‐nSTDP): An efficient and reusable catalyst for Suzuki–Miyaura cross‐coupling and Heck reactions. Advanced Synthesis & Catalysis, 2013; 355(5): 957-972. doi.org/10.1002/adsc.201200707.
[25] Zhai R, et al. Immobilization of enzyme biocatalyst on natural halloysite nanotubes. Catalysis Communications, 2010; 12(4): 259-263. doi.org/10.1016/j.catcom.2010.09.030.
[26] Li R, et al. Highly selective solid-phase extraction of trace Pd (II) by murexide functionalized halloysite nanotubes. Analytica Chimica Acta, 2012; 713:136-144. doi.org/10.1016/j.aca.2011.11.047.
[27] Moeinpour F, Soofivand F, Mohseni-Shahri FS, Controlled release of losartan from acid-and heat-treated halloysite nanotubes. Medicinal Chemistry Research, 2019; 28(2): 160-168. doi.org/10.1007/s00044-018-2273-y.
[28] Yamaura, M, et al. Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. Journal of magnetism and magnetic materials, 2004; 279(2-3): 210-217. doi.org/10.1016/j.jmmm.2004.01.094.
[29] Ganganboina, AB, Chowdhury AD, Doong RA. Nano assembly of N-doped graphene quantum dots anchored Fe3O4/halloysite nanotubes for high performance supercapacitor. Electrochimica Acta, 2017; 245: 912-923. doi.org/10.1016/j.electacta.2017.06.002.
[30] Zheng Y, et al. Two colorimetric films based on chitin whiskers and sodium alginate/gelatin incorporated with anthocyanins for monitoring food freshness. Food Hydrocolloids, 2022; 127: 107517. doi.org/10.1016/j.foodhyd.2022.107517.
[31] Wang C, et al. Bioinspired chitin/gelatin composites with enhanced mechanical property. Journal of Applied Polymer Science, 2024; 141(31): e55737. doi.org/10.1002/app.55737.
[32] Etxabide, A, et al. Analysis of advanced glycation end products in ribose-, glucose-and lactose-crosslinked gelatin to correlate the physical changes induced by Maillard reaction in films. Food Hydrocolloids, 2021; 117: 106736. doi.org/10.1016/j.foodhyd.2021.106736.
[33] Wang Q, et al. Adsorption and release of ofloxacin from acid-and heat-treated halloysite. Colloids and Surfaces B: Biointerfaces, 2014; 113: 51-58. doi.org/10.1016/j.colsurfb.2013.08.036.
[34] Saberi-Zare M, Bodaghifard MA. A Schiff base-functionalized chitosan magnetic bio-nanocomposite for efficient removal of Pb (II) and Cd (II) ions from aqueous solutions. International Journal of Biological Macromolecules, 2025; 296: 139794. doi.org/10.1016/j.ijbiomac.2025.139794.
[35] Li J, et al. Co-precipitation fabrication of cellulose/chitosan-aniline grafted composites for efficient removal of Pb2+ ions from aqueous solution. International Journal of Biological Macromolecules, 2025; 295: 139383. doi.org/10.1016/j.ijbiomac.2024.139383.
[36] Liu T, et al. N-methylene phosphonic chitosan aerogels for efficient capture of Cu2+ and Pb2+ from aqueous environment. Carbohydrate Polymers, 2021; 269: 118355. doi.org/10.1016/j.carbpol.2021.118355.
[37] Manzoor K, et al. Removal of Pb (ii) and Cd (ii) from wastewater using arginine cross-linked chitosan–carboxymethyl cellulose beads as green adsorbent. RSC advances, 2019; 9(14): 7890-7902. doi.org/10.1039/C9RA00356H.
[38] Gautam PK, Shivalkar S, Banerjee S. Synthesis of M. oleifera leaf extract capped magnetic nanoparticles for effective lead [Pb (II)] removal from solution: Kinetics, isotherm and reusability study. Journal of Molecular Liquids, 2020; 305: 112811. doi.org/10.1016/j.molliq.2020.112811.
[39] Chiew CSC, et al. Stability and reusability of alginate-based adsorbents for repetitive lead (II) removal. Polymer Degradation and Stability, 2016; 123: 146-154. doi.org/10.1016/j.polymdegradstab.2015.11.022.
[40] Zhang L, Zeng Y, Cheng Z. Removal of heavy metal ions using chitosan and modified chitosan: A review. Journal of Molecular Liquids, 2016; 214: 175-191. doi.org/10.1016/j.molliq.2015.12.013.
[41] Li SS, et al. Modifying alginate beads using polycarboxyl component for enhanced metal ions removal. International journal of biological macromolecules, 2020; 158: 493-501. doi.org/10.1016/j.ijbiomac.2020.05.038.
[42] Al-Ghouti MA, Da'ana DA. Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of hazardous materials, 2020; 393: 122383. doi.org/10.1016/j.jhazmat.2020.122383.
[43] Heidari-Chaleshtori M, Nezamzadeh-Ejhieh A. Clinoptilolite nano-particles modified with aspartic acid for removal of Cu (II) from aqueous solutions: isotherms and kinetic aspects. New Journal of Chemistry, 2015; 39(12): 9396-9406. doi.org/10.1039/C5NJ01631B.
[44] Beigzadeh P, Moeinpour F. Fast and efficient removal of silver (I) from aqueous solutions using aloe vera shell ash supported Ni0. 5Zn0. 5Fe2O4 magnetic nanoparticles. Transactions of Nonferrous Metals Society of China, 2016; 26(8): 2238-2246. doi.org/10.1016/S1003-6326(16)64341-8.
[45] Zhao X, et al. Novel chitosan/lignin hydrogel prepared by the Mannich reaction for Pb (II) and Cu (II) removal from aqueous solution. International Journal of Biological Macromolecules, 2025; 285: 138177. doi.org/10.1016/j.ijbiomac.2024.138177.
[46] Dutta J, A facile approach for the determination of degree of deacetylation of chitosan using acid-base titration. Heliyon, 2022; 8(7).
[47] Nollet H, et al. Removal of PCBs from wastewater using fly ash. Chemosphere, 2003; 53(6): 655-665. doi.org/10.1016/S0045-6535(03)00517-4.
[48] Aravindhan R, et al. Equilibrium and thermodynamic studies on the removal of basic black dye using calcium alginate beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007; 299(1-3): 232-238. doi.org/10.1016/j.colsurfa.2006.11.045.
[49] Nezamzadeh-Ejhieh A, Kabiri-Samani M. Effective removal of Ni (II) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime. Journal of Hazardous Materials, 2013; 260: 339-349. doi.org/10.1016/j.jhazmat.2013.05.014.
[50] Weijiang Z, et al. Adsorption of Pb (II) ions from aqueous environment using eco-friendly chitosan schiff’s base@ Fe3O4 (CSB@ Fe3O4) as an adsorbent; kinetics, isotherm and thermodynamic studies. International journal of biological macromolecules, 2017; 105: 422-430. doi.org/10.1016/j.ijbiomac.2017.07.063.
[51] Chen Q, et al. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. Journal of water process engineering, 2018; 26: 289-300. doi.org/10.1016/j.jwpe.2018.11.003.
[52] Chen Y, et al. Ninhydrin-functionalized chitosan for selective removal of Pb (II) ions: Characterization and adsorption performance. International Journal of Biological Macromolecules, 2021; 177: 29-39. doi.org/10.1016/j.ijbiomac.2021.02.110.
[53] Liang W, et al. Polyamine-co-2, 6-diaminopyridine covalently bonded on chitosan for the adsorptive removal of Hg (II) ions from aqueous solution. International journal of biological macromolecules, 2019; 130: 853-862. doi.org/10.1016/j.ijbiomac.2019.03.007.
[54] Billah REK, et al. A novel glutaraldehyde cross-linked chitosan@ acid-activated bentonite composite for effective Pb (II) and Cr (VI) adsorption: Experimental and theoretical studies. Separation and Purification Technology, 2024; 334: 126094. doi.org/10.1016/j.seppur.2023.126094.
[55] Shen W, et al. Chitosan crosslinked with polyamine-co-melamine for adsorption of Hg2+: Application in purification of polluted water. International Journal of Biological Macromolecules, 2021; 181: 778-785. doi.org/10.1016/j.ijbiomac.2021.03.166.
[56] Wu S, et al. Development of L-Met functionalized cellulose nanofiber for an efficient removal of Pb2+ from aqueous solution: Characterization, adsorption behavior, DFT calculations and physiochemical mechanism. International Journal of Biological Macromolecules, 2025; 292: 139180. doi.org/10.1016/j.ijbiomac.2024.139180.