بررسی عملکرد جاذب پلیمری چاپ یونی جهت حذف فلز سنگین روی از محیط آبی
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوین
مرتضی فقیهی
1
,
محسن اسماعیل پور
2
*
1 - . استادیار، گروه پژوهشی شیمی و فرایند، پژوهشگاه نیرو، تهران، ایران
2 - گروه پژوهشی شیمی و فرآیند، پژوهشگاه نیرو
کلید واژه: جاذب پلیمری, چاپ یونی, یون روی, فلز سنگین, ایزوترم, سینتیک. ,
چکیده مقاله :
بحث تصفیه آب در دهه های اخیر بسیار مورد توجه کشورها قرار گرفته است. استفاده از جاذبهای نوین در فرآیند جذب آلایندهها از آب به یکی از مباحث مهم در تحقیقات بدل شده است. از این رو در این تحقیق ساخت و بررسی خواص جاذب پلیمری چاپ یونی جهت حذف فلز سنگین روی از محیط آبی انجام شده است. در ابتدا ساختارهسته/پوسته مغناطیسی آهن/سیلیکا ساخته شد و پس از عاملدار شدن با گروه عاملی آمینی، به عنوان پایه برای ساخت جاذب پلیمری چاپ یونی استفاده شد. جاذب پلیمری چاپ یونی با حضور پایه مغناطیسی، یون هدف روی، آغازگر و اتصال دهنده سنتز گردید. آزمونهای FT-IR، XRD، FE-SEM، TEM، BET و VSM جهت تعیین خواص ساختاری پایه هسته/پوسته و جاذب پلیمری چاپ یونی استفاده شدند. همچنین جهت عملکرد جذبی، آزمونهای تأثیر pH، دوز جاذب، غلظت اولیه، سینتیک و ایزوترم انجام گردیدند. ساختار کروی با متوسط اندازه ذرات nm 40-30 برای جاذب پلیمری چاپ یونی در نتایج مورفولوژی مشاهده شد. همچنین وجود فاز آهن (مگنتیت) با عملکرد مغناطیسی مناسب در آزمونهای XRD، FTIR و VSM تایید شد. دادههای آزمایشگاهی با مدل سینتیک شبه درجه دوم و مدل ایزوترم لانگمویر تطابق بهتری نشان دادند و حداکثر ظرفیت جذب یون فلزی روی توسط جاذب پلیمری چاپ یونی mg/g 49/88 تخمین زده شد.نتایج نشان داد که جاذب پلیمری چاپ یونی عملکرد جذب انتخاب پذیر بسیار خوبی برای یون فلزی روی از محیطهای آبی دارد.
In this study, the construction and investigation of the properties of an ion-imprinted polymer adsorbent for the removal of heavy metal zinc from the aquatic environment was carried out. Initially, a magnetic core/shell structure of iron/silica was fabricated and after functionalization with an amine functional group, it was used as a base for the preparation of an ion-imprinted polymer adsorbent. The ion-imprinted polymer adsorbent was synthesized in the presence of a magnetic base, zinc target ion, initiator, and binder. FT-IR, XRD, FE-SEM, TEM, BET, and VSM tests were used to determine the structural properties of the core/shell base and the ion-imprinted polymer adsorbent. Also, for the adsorption performance, the effects of pH, adsorbent dosage, initial concentration, kinetics, and isotherm were performed. A spherical structure with an average particle size of 30-40 nm was observed for the ion-imprinted polymer adsorbent in the morphology results. Also, the presence of an iron phase (magnetite) with suitable magnetic performance was confirmed in XRD, FTIR and VSM tests. The experimental data showed a better agreement with the pseudo-second-order kinetic model and the Langmuir isotherm model, and the maximum adsorption capacity of zinc metal ion by the ion-imprinted polymer adsorbent was estimated to be 88.49 mg/g. The results showed that the ion-imprinted polymer adsorbent has a very good selective adsorption performance for zinc metal ion from aqueous media.
1. Abas SNA, Ismail MHS, Kamal ML, Izhar S. Adsorption process of heavy metals by low-cost adsorbent: a review. World Applied Sciences Journal. 2013;28(11):1518-30.
2. Can Sener SE, Thomas VM, Hogan DE, Maier RM, Carbajales-Dale M, Barton MD, et al. Recovery of critical metals from aqueous sources. ACS sustainable chemistry & engineering. 2021;9(35):11616-34.
3. Joseph L, Jun B-M, Flora JR, Park CM, Yoon Y. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere. 2019;229:142-59.
4. Ali Redha A. Removal of heavy metals from aqueous media by biosorption. Arab Journal of basic and applied sciences. 2020;27(1):183-93.
5. Parvathi E, Dilraj N, Akshaya C, Deepak N. A review on graphene-based adsorbents for the remediation of toxic heavy metals from aqueous sources. International Journal of Environmental Science and Technology. 2023;20(10):11645-72.
6. Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of environmental chemical engineering. 2017;5(3):2782-99.
7. Bolisetty S, Peydayesh M, Mezzenga R. Sustainable technologies for water purification from heavy metals: review and analysis. Chemical Society Reviews. 2019;48(2):463-87.
8. Bhattacharya A, Mandal S, Das S. Adsorption of Zn (II) from aqueous solution by using different adsorbents. Chemical Engineering Journal. 2006;123(1-2):43-51.
9. Obasi PN, Akudinobi BB. Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki, southeast Nigeria. Applied Water Science. 2020;10(7):1-23.
10. Owolabi JB, Hekeu MM. Isolation and characterization of zinc resistant bacteria from a coil coating industrial wastewater treatment plant. International Journal of Environmental Sciences. 2015;5(5):1030-42.
11. Asadollahzadeh M, Torkaman R, Torab-Mostaedi M. New liquid-liquid extraction column with random packed agitation structure for heavy metal removal and hydrodynamic evaluation. Minerals Engineering. 2022;187:107812.
12. Pang FM, Teng SP, Teng TT, Omar AM. Heavy metals removal by hydroxide precipitation and coagulation-flocculation methods from aqueous solutions. Water Quality Research Journal. 2009;44(2):174-82.
13. BrbootI MM, Abid BA, Al-ShuwaikI NM. Removal of heavy metals using chemicals precipitation. Eng Technol J. 2011;29(3):595-612.
14. Du J, Zhang B, Li J, Lai B. Decontamination of heavy metal complexes by advanced oxidation processes: A review. Chinese Chemical Letters. 2020;31(10):2575-82.
15. Rajendran S, Priya A, Kumar PS, Hoang TK, Sekar K, Chong KY, et al. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. Chemosphere. 2022;303:135146.
16. Sivakumar D, Shankar D, Gomathi V, Nandakumaar A. Application of electro-dialysis on removal of heavy metals. Pollution Research. 2014;33:627-37.
17. Hubicki Z, Kołodyńska D. Selective removal of heavy metal ions from waters and waste waters using ion exchange methods. Ion exchange technologies. 2012;7:193-240.
18. Ipek U. Removal of Ni (II) and Zn (II) from an aqueous solutionby reverse osmosis. Desalination. 2005;174(2):161-9.
19. Wu H, Lin G, Liu C, Chu S, Mo C, Liu X. Progress and challenges in molecularly imprinted polymers for adsorption of heavy metal ions from wastewater. Trends in Environmental Analytical Chemistry. 2022;36:e00178.
20. Lazar MM, Ghiorghita C-A, Dragan ES, Humelnicu D, Dinu MV. Ion-imprinted polymeric materials for selective adsorption of heavy metal ions from aqueous solution. Molecules. 2023;28(6):2798.
21. Sharma G, Kandasubramanian B. Molecularly imprinted polymers for selective recognition and extraction of heavy metal ions and toxic dyes. Journal of Chemical & Engineering Data. 2020;65(2):396-418.
22. Tchekwagep PMS, Crapnell RD, Banks CE, Betlem K, Rinner U, Canfarotta F, et al. A critical review on the use of molecular imprinting for trace heavy metal and micropollutant detection. Chemosensors. 2022;10(8):296.
23. Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, et al. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC trends in analytical chemistry. 2020;128:115923.
24. Sardarian AR, Eslahi H, Esmaeilpour M. Green, cost‐effective and efficient procedure for Heck and Sonogashira coupling reactions using palladium nanoparticles supported on functionalized Fe3O4@ SiO2 by polyvinyl alcohol as a highly active, durable and reusable catalyst. Applied Organometallic Chemistry. 2019;33(7):e4856.
25. Kazemnejadi M, Shakeri A, Nikookar M, Mohammadi M, Esmaeilpour M. Co (II) Schiff base complex decorated on polysalicylaldehyde as an efficient, selective, heterogeneous and reusable catalyst for epoxidation of olefins in mild and self-coreductant conditions. Research on Chemical Intermediates. 2017;43:6889-910.
26. Inaloo ID, Majnooni S, Eslahi H, Esmaeilpour M. N-Arylation of (hetero) arylamines using aryl sulfamates and carbamates via C–O bond activation enabled by a reusable and durable nickel (0) catalyst. New Journal of Chemistry. 2020;44(31):13266-78.
27. Esmaeilpour M, Sardarian AR, Firouzabadi H. Theophylline supported on modified silica‐coated magnetite nanoparticles as a novel, efficient, reusable catalyst in green one‐Pot synthesis of spirooxindoles and phenazines. ChemistrySelect. 2018;3(32):9236-48.
28. Esmaeilpour M, Zahmatkesh S, Fahimi N, Nosratabadi M. Palladium nanoparticles immobilized on EDTA‐modified Fe3O4@ SiO2 nanospheres as an efficient and magnetically separable catalyst for Suzuki and Sonogashira cross‐coupling reactions. Applied Organometallic Chemistry. 2018;32(4):e4302.
29. Javidi J, Esmaeilpour M, Khansari MR. Synthesis, characterization and application of core–shell magnetic molecularly imprinted polymers for selective recognition of clozapine from human serum. Rsc Advances. 2015;5(89):73268-78.
30. Emadi M, Shams E, Amini MK. Removal of Zinc from Aqueous Solutions by Magnetite Silica Core‐Shell Nanoparticles. Journal of Chemistry. 2013;2013(1):787682.
31. Bao S, Tang L, Li K, Ning P, Peng J, Guo H, et al. Highly selective removal of Zn (II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@ SiO2 magnetic nano-adsorbent. Journal of colloid and interface science. 2016;462:235-42.
32. Najafi P, Zabihi M, Faghihi M. Remarkable Adsorption of Anionic Dye on the Supported Magnetic and Non-Magnetic Polymeric Nanocomposites Including Chitosan/Polyacrylamide and Chitosan/Polylactic Acid. Water, Air, & Soil Pollution. 2024;235(6):366.
33. Wang M. High-Performance Magnetic Fe3O4/SiO2-NH2 Nanocomposites: Synthesis and Application for the Removal of Zn2+ Ions from Water. Journal of Water Chemistry and Technology. 2024;46(2):149-56.
34. Noormohammadi M, Zabihi M, Faghihi M. Design, Characterization and Performance of the Modified Chitosan–Alumina Nanocomposites for the Adsorption of Hydroquinone and Arsenic (V) Ions. Korean Journal of Chemical Engineering. 2024;41(5):1535-50.
35. Shaba EY, Tijani JO, Jacob JO, Suleiman MAT, Mathew JT. Preparation, characterization, adsorptive and antimicrobial properties of Fe3O4@ SiO2@ ZnO nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024;686:133190.