سنتز دیبوراید زیرکونیم با استفاده از روشهای احیا کربوترمال، بوروترمال و بوروکربوترمال
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینعلی تحویلیان 1 , حسن شریفی 2 , ساسان اطرج 3 , هادی نصیری 4
1 - دانشجوی کارشناسی ارشد، گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه شهرکرد.
2 - استادیار گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه شهرکرد.
3 - استادیار گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه شهرکرد.
4 - کارشناس ارشد، گروه صنایع امیرالمومنین هوافضا.
کلید واژه: سنتز, دیبوراید زیرکونیم, کربوترمال, بوروترمال, بوروکربوترمال,
چکیده مقاله :
تاکنون روشهای بسیار زیادی برای سنتز ذرات دیبوراید زیرکونیم بکار رفته است که انتخاب هر یک از این روشها مزایا و معایبی را در بر داشته است. در این میان فرایند احیا میتواند جزء روشهای کم هزینه بشمار رود. در این پژوهش با استفاده از پودرهای اولیه زیرکونیا، بورات، کاربید بور و کربن، پودر دیبوراید زیرکونیم باروش احیا تولید شد. دیبوراید زیرکونیم با استفاده از فرایندهای احیای کربوترمال(ZrO2+B2O3+C)، احیای بوروترمال(ZrO2+B4C) و احیای تلفیقی بروترمال و کربوترمال، (بوروکربوترمال)، (ZrO2+B4C+C) سنتز شد. بررسیها به وسیله XRD و میکروسکوپ الکترونی SEM نشان دادند که پودر ZrB2 تولید شده با روش احیای کربوترمال به صورت میلهای شکل رشد کرده ضمن اینکه ناخالصی کربن در پودر ZrB2 مشاهده شدکه با انجام فرایند حرارتدهی در کوره اکسیدی حذف گردید. در محصول ناشی از فرایند سنتز با روش بوروترمال، ناخالصی بورات و رشد میلهای شکل ZrB2مشاهده شد. ناخالصی بورات به راحتی در شست و شوی با اتانول و آب حذف شد. در سنتز به روش احیا بور و کربوترمال نسبت به سنتز با روش احیا بوروترمال نفوذی کمتر در میان دانهها رخ داده است، این امر به دلیل وجود کربن در نمونه است. ضمن اینکه مشابه با روش کربوترمال کربن از سیستم خذف شد. مقایسه روشها نشان داد که روش سنتز پودر دیبوراید زیرکونیوم با استفاده از احیای کاربید بور روشی مطلوبتر از جهت ریخت شناسی پودر و سینترپذیری، در بین روش یاد شده برای تولید پودر میباشد.
In thepresent research Zirconium diboride powder was synthesized by carbothermal activation (ZrO2+B2O3+C), borothermal activation (ZrO2+B4C), and a compound carbothermal- borothermal, i.e. borocarbothermal, activation (ZrO2+B4C+C) of different compositions at 1550°C for 3 h under argon atmosphere. XRD and SEM studies showed that the ZrB2 powder synthesized by carbothermal activation method has grown with a rod-like morphology. In addition, carbon impurity was observed in the ZrB2 powder. However, in the final product carbon appeared as an element which was omitted by heating at 500°C in an oxidation oven. The powder particles synthesized by this method are larger compared to those produced by other methods. Moreover, there is a lower possibility of sintering of the particles in this method. Synthesis by borothermal method, on the other hand, resulted in appearance of borate as impurity and the rod-like growth of ZrB2. The borate impurity was reduced by washing with ethanol. Synthesis by borocarbothermal route shows a lower amount of particles penetration compared to the borothermal method, which is due to the presence of carbon in the sample. Also, in borocarbothermal synthesis carbon was reduced from the system similar to the carbothermal method. A comparison between the abovementioned routes revealed that activation of borate carbide is a more appropriate method for synthesizing zirconium diboride powder compared to the other techniques.
1- Y. Zhang, Li. Ruixing, J. Yanshan, Zh. Bin, D. Huiping, Li. Junping and F. Zhihai,"Morphology Evolution of ZrB2nano Particles Synthesized by Sol–Gel Method", Journal of Solid State Chemistry, vol. 184, pp. 2047-2052, 2011.
2- W. G. Fahrenholtz,G. E. Hilmas, I. G. Talmy and J. A. Zaykoski, "Refractory diborides of Zirconium and Hafnium", Journal of the American Ceramic Society, vol. 90, pp. 1347–1364, 2007.
3- G. Sun, H. Wang, W. Wang, Y. Wang and Z. FU, "Synthesis of Ultra-Fine ZrB2 Powder by Borothermal Reaction Under High Heating Rate", Advanced Materials Research, vol. 66, pp. 77-80, 2009.
4- B. Akgün, "Formation of Zirconium diboride and other metal borides by Volume Combustion Synthesis and Mechanochemical Process", M. S. Thesis, Middle East Technical University, Ankara, 2008.
5- C. Monticelli,F. Zucchi, A. Pagnoni and M. D. Colle, "Corrosion of a Zirconium Diboride/Silicon Carbide Composite in Aqueous Solutions". Electrochimica Acta, vol. 50, pp. 3461–3469, 2005.
6- J. K. Sonber, T. S. R. Ch. Murthy, C. Subramanian, S. Kumar, R. K. Fotedar and A.K. Suri, "Investigations on synthesis of ZrB2 and Development of New Composites with HfB2 and TiSi2", International Journal of Refractory Metals and Hard Materials, vol. 29, pp. 21–30, 2011.
7- A. Makino and C. K. Law, "SHS Combustion Characteristics of Several Ceramics and Intermetallic Compounds”, Journal of the American Ceramic Society", vol. 77, pp. 778-786, 1994.
8- E. Bilgi, "Production of Titanium Diboride", M. S. Tthesis, Middle East Technical University, Ankara, 2007.
9- Y.L. Xie, Xie, H. Thomas, S. Sanders and F. Robert, "Solution-Based Synthesis of Submicrometer ZrB2 and ZrB2–TaB2", Journal of the American Ceramic Society, vol. 91, pp. 1469-1474. 2008.
10- سیمچی، ع، "آشنایی با نانوذرات (خواص، روش تولید و کاربردها)"، دانشگاه صنعتی شریف، چاپ اول، 1387، ص 232-221.
11- T. Tsuchida and S. Yamamoto, "Mechanical Activation Assisted Self-Propagating High Temperature Synthesis of ZrC and ZrB2 in Air from Zr/B/C Powder Mixtures", Journal of the European Ceramic Society, vol. 24, pp. 45-51, 2004.
12- W. M. Guo and G. J. Zhang, "Reaction Processes and Characterization of ZrB2 Powder Prepared by Boro/Carbothermal Reduction of ZrO2in Vacuum", Journal of the American Ceramic Society, vol. 92, pp. 264–267, 2009.
13- W. Xin-Gang, G. Wei-Ming and Z. Guo-Jun, "Pressure Less sintering Mechanism and Microstructure of ZrB2–SiC Ceramics Doped with Boron", Scripta Materialia, vol. 61, pp. 177–180, 2009.
14- صالحی،م. مهمان نواز،ح.، کرباسیان، غ. رحمانی،م.، "بررسی اثر شار حرارتی بر ریزساختار و عملکرد پوششهای سد حرارتی مرتبه ای"، نشریه مواد نوین، دوره 5، شماره 20، ص130-117، تابستان 1394.
15- A. I. Karasev, " Preparation of Technical Zirconium Diboride by the Carbothermic Reduction of Mixtures of Zirconium and Boron Oxides", Soviet Powder Metallurgy and Metal Ceramics, vol. 12, pp. 926-929, 1973.
16- L. Barton, D. Nicholls, "The Hydrogenation of Boron Monoxide to Diborane and the Reactions of Boron and Boron Carbide with Titanium and Zirconium Dioxides", Journal Inorganic Nuclear Chemistry, vol. 28, pp. 1367–1372, 1966.
17- L. Donnan, "The hydrogenation of Boron Monoxide to Diborane and the Reactions of Boron and Boron Carbide with Titanium and Zirconium Dioxides", Journal of Inorganic and Nuclear Chemistry, vol. 28, pp. 1367–1372, 1966.
18- L. Haijie, L. Ruixing, Zh. Yun, J. Yanshan, Zh. Bin, L. Chengqiang L. Junping and F. Zhihai, Reduction "Low Temperature Synthesis of ZrB powder Synergistically by Borothermal and Carbothermal Reduction", Rare Metals, vol. 30, pp. 541-558, 2011.
19- W. Hailong, Sh. Zhang, D. Chen, Q. Han, H. Lu, H. Xu, W. Chang and R. Zhang, "Carbothermal Reduction Synthesis of Zirconium Diboride Powders Assisted by Microwave", Advanced Materials Research, vol. 105-106, pp. , 203-206, 2010.
20- J. Eun-Younh, K. Jung-Hun, J. Se-Hyuk and C. Sung-Churl,"Synthesis of ZrB2 Powders by Carbothermal and Borothermal Reduction", Journal of Alloys and Compounds,vol. 538, pp. 164–168, 2012.
21- Q. Hui-Yu, G. Wei-Ming and Z Ji,"ZrB2 Powders Prepared by Boro/Carbothermal Reduction of ZrO2: The Effects of Carbon Source and Reaction Atmosphere", Powder Technology, vol. 217, No. 3, pp. 462–466, 2012.
22- A. Monshi, M.R. Foroughi and M.R. Monshi," Modified Scherrer Equation to Estimate Eoreeccuratelynano-Crystallite Size Using XRD", World Journal of Nano Science and Engineering, vol. 2, No.3, pp. 154-160, 2012.
23- Y. Liu, A. Erdemir and E. I. Meletis, "Influence of Environmental Parameters on the Frictional Behavior of DLC Coatings", Surface and Coatings Technology, vol. 94-95, pp. 463-468, 1997.