سنتز و بررسی خواص نانوکامپوزیت شیشه زیست فعال (S45)/TiO2/فلوئورآپاتیت
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینمرضیه عباسی 1 , ایمان فرح بخش 2 *
1 - گروه اطفال، دانشکده دندانپزشکی، دانشگاه علوم پزشکی مشهد، ایران
2 - گروه مهندسی مکانیک، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران
کلید واژه: نانوکامپوزیت, شیشه زیست فعال, دی اکسید تیتانیوم, غوطهوری, فلوئورآپاتیت,
چکیده مقاله :
شیشههای زیست فعال بهدلیل توانایی برقراری پیوند شیمیایی و فیزیکی با استخوان کاربرد وسیعی به عنوان روکش در ترمیم استخوان و کاشتنیهای فلزی بدن دارند. استفاده از نانو پودر شیشه زیست فعال در پوششهای کامپوزیتی علاوه بر بهبود خواص شیمیایی و افزایش زیست سازگاری کاشتنیها در محیط بدن، بهدلیل سختی ذاتی شیشه، باعث افزایش استحکام پوشش نیز میگردد. در این پژوهش، ابتدا ذرات شیشه زیست فعال در ابعاد نانومتری تولید گردیده و سپس نانوکامپوزیت شیشه زیست فعال (S45)/TiO2/فلوئورآپاتیت با استفاده از اختلاط مواد اولیه سنتز شده و یک یا چند لایه از آن طی روش غوطه وری بر روی صفحه تیتانیومی پوشش دهی شد. از طرفی به منظور بررسی دقیقتر اثر شیشه زیست فعال و فلوئور آپاتیت در ترکیب کامپوزیت مورد نظر، مقادیر مختلفی از این مواد در تهیه پوشش مورد استفاده قرار گرفت. خواص فیزیکی و شیمیایی پوشش تهیه شده به کمک آنالیزهای پراش پرتوی ایکس (XRD)، طیف سنجی مادون قرمز (FTIR)، میکروسکوپ الکترونی روبشی (SEM)، آنالیز اندازه ذرات (PSA) و آزمون سختی سنجی مورد بررسی قرار گرفت. تصاویر SEM و آنالیزهای پراش پرتوی ایکس (XRD) نشان دادند که لایه آپاتیتی بر روی سطح پوشش پس از غوطهور کردن در محلول شبیهسازی شده بدن (SBF) تشکیل میگردد. تشکیل این لایه با افزایش زمان غوطهور بودن نمونهها در محلول شبیه ساز بدن (SBF) و افزایش مقدار شیشه زیست فعال و فلوئور آپاتیت، افزایش مییابد. در نهایت برای نانوذرات تولید شده در این مقاله، میزان سختی برحسب تعداد لایههای پوششدهی شده مورد بررسی قرار گرفت.
Bioactive glasses are widely used as coatings for bone remodeling and metal implants due to the ability to bind chemically and physically with the bone. Using of bioactive glass in composite coatings not only will increase chemical properties. The use of bioactive glass nanopowders in composite coatings, in addition to improving the chemical properties and increasing the biocompatibility of the extinctions in the body, due to the inherent hardness of the glass, also increases the strength of the coating. In this study, coatings containing bioactive glass were synthesized in Nano scale using a mixture of raw materials, and by dipping method one or more layers coated onto plates Titanium. On the other hand, in order to investigate more accurately the effect of vitreous glass and fluorapatite on the composition of the composite, various amounts of these materials were used in coating preparation. The chemical and mechanical properties of the coated specimens in body simulated solution (SBF) were investigated by XRD, SEM, PSA and FTIR. SEM images and X-ray diffraction analyzes (XRD) showed that the apatite layer is formed on the surface of the coating after immersion in the SBF. The formation of this layer increases with increasing immersion time in the SBF and increasing the amount of bioactive glass and fluorapatite. Finally, for the nanoparticles produced in this paper, the degree of hardness was studied in terms of the number of coated layers.
References:
1- Meffert, R., M. Block, and J. Kent, What is osseointegration? The International journal of periodontics & restorative dentistry, 1986. 7(4): p. 9-21.
2- Hench, L.L., The story of Bioglass®. Journal of Materials Science: Materials in Medicine, 2006. 17(11): p. 967-978.
3- Ethridge, E. and L. Hench, Biomaterials-an interfacial approach, in Biophysics and Bioangineering Series. 1982, New York Academic Press.
4- LeGeros, R.Z., Apatites in biological systems. Progress in crystal growth and characterization, 1981. 4(1): p. 1-45.
5- Kumar, R.R. and M. Wang, Biomimetic deposition of hydroxyapatite on brushite single crystals grown by the gel technique. Materials Letters, 2001. 49(1): p. 15-19.
6- Denissen, H., et al., Preparation-induced stability of bioactive apatite coatings. International Journal of Prosthodontics, 1991. 4(5).
7- Miloro, M., et al., Peterson's principles of oral and maxillofacial surgery. Vol. 1. 2004: PMPH-USA.
8- LeGeros, R., et al., In vitro caries-like lesion formation in F-containing tooth enamel. Journal of Dental Research, 1983. 62(2): p. 138-144.
9. Cheng, K., S. Zhang, and W. Weng, Surface characterization of colloidal-sol gel derived biphasic HA/FA coatings. Journal of Materials Science: Materials in Medicine, 2007. 18(10): p. 2011-2015.
10- Hench, L., Semiconducting glass-ceramics. Journal of Non-Crystalline Solids, 1970. 2: p. 250-277.
11- Moreno, E.C., M. Kresak, and R.T. Zahradnik, Fluoridated hydroxyapatite solubility and caries formation. Nature, 1974. 247(5435): p. 64-65.
12- Aoba, T., The effect of fluoride on apatite structure and growth. Critical Reviews in Oral Biology & Medicine, 1997. 8(2): p. 136-153.
13- Kim, H.W., et al., Sol–Gel Preparation and Properties of Fluoride‐Substituted Hydroxyapatite Powders. Journal of the American Ceramic Society, 2004. 87(10): p. 1939-1944.
14- نصراصفهانی, م., م.ح. فتحی, ح. ادریس, مقایسه خواص فیزیکی- شیمیایی سه نوع پوشش نانوساختار شیشه زیست فعال و زیست فعالی آنها. فرآیندهای نوین در مهندسی مواد, 2009. 3(3): p. 29-35.
15- Brauer, D.S., et al., Fluoride-containing bioactive glasses: effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomaterialia, 2010. 6(8): p. 3275-3282.
16- Xia, W. and J. Chang, Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-mediated sol–gel method. Materials letters, 2007. 61(14): p. 3251-3253.
17- Muhonen, V., et al., Biocompatibility of sol–gel-derived titania–silica coated intramedullary NiTi nails. Acta biomaterialia, 2009. 5(2): p. 785-793.
18- Yurong, C. and Z. Lian, Effect of thermal treatment on the microstructure and mechanical properties of gel-derived bioglasses. Materials Chemistry and Physics, 2005. 94(2): p. 283-287.
19- Anand, V., et al., B 2 O 3–MgO–SiO 2–Na 2 O–CaO–P 2 O 5–ZnO bioactive system for bone regeneration applications. Ceramics International, 2016. 42(2): p. 3638-3651.
20- Cao, Y., et al., A 45S5 Bioactive Glass Scaffold Reinforced with ZnO and MgO. Journal of Biomaterials and Tissue Engineering, 2016. 6(2): p. 98-106.
21- El-Kady, A.M. and A.F. Ali, Fabrication and characterization of ZnO modified bioactive glass nanoparticles. Ceramics International, 2012. 38(2): p. 1195-1204.
22- Guo, W., et al., Characterization of the mechanical behaviors and bioactivity of tetrapod ZnO whiskers reinforced bioactive glass/gelatin composite scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2017. 68: p. 8-15.
23- Mokhtari, S., et al., Copper-containing glass polyalkenoate cements based on SiO2–ZnO–CaO–SrO–P2O5 glasses: glass characterization, physical and antibacterial properties. Journal of Materials Science, 2017. 52(15): p. 8886-8903.
24- Webster, T.J., R.W. Siegel, and R. Bizios, Osteoblast adhesion on nanophase ceramics. Biomaterials, 1999. 20(13): p. 1221-1227.
25- Al-Noaman, A., et al., Effect of FA on bioactivity of bioactive glass coating for titanium dental implant. Part I: Composite powder. Journal of Non-Crystalline Solids, 2013. 364: p. 92-98.
26- Chatzistavrou, X., et al., Sol–gel based fabrication and characterization of new bioactive glass–ceramic composites for dental applications. Journal of the European Ceramic Society, 2012. 32(12): p. 3051-3061.
27- Zeitler, V.A. and C.A. Brown, The Infrared Spectra of Some Ti-O-Si, Ti-O-Ti and Si-O-Si Compounds. The Journal of Physical Chemistry, 1957. 61(9): p. 1174-1177.
28- Doostmohammadi, A., et al., A comparative physico-chemical study of bioactive glass and bone-derived hydroxyapatite. Ceramics International, 2011. 37(5): p. 1601-1607.
29- مازیار, ع, ..., ساخت و بررسی خواص مکانیکی کامپوزیت هیدروکسی آپاتیت/ذرات شیشه زیست فعال تهیه شده به روش سل-ژل.
30- Balamurugan, A., et al., Electrochemical and structural characterisation of zirconia reinforced hydroxyapatite bioceramic sol–gel coatings on surgical grade 316L SS for biomedical applications. Ceramics International, 2007. 33(4): p. 605-614.
31- Jones, J.R., P. Sepulveda, and L.L. Hench, Dose‐dependent behavior of bioactive glass dissolution. Journal of Biomedical Materials Research Part A, 2001. 58(6): p. 720-726.
32-Balamurugan, A., et al., Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications. Materials Letters, 2006. 60(29): p. 3752-3757.
33-Barrett, C.S. and T.B. Massalski, Structure of metals. Vol. 631. 1966, McGraw-Hill New York.
34-Rabiee, S.M., et al., Effect of ion substitution on properties of bioactive glasses: a review. Ceramics International, 2015. 41(6): p. 7241-7251.
35-Hench, L.L., Bioceramics, a clinical success. American Ceramic Society Bulletin, 1998. 77(7): p. 67-74.
36-Almeida, R.M. and E.E. Christensen, Crystallization behavior of SiO 2− TiO 2 sol-gel thin films. Journal of Sol-Gel Science and Technology, 1997. 8(1): p. 409-413.
37-Stanić, V., Variation in Properties of Bioactive Glasses After Surface Modification, in Clinical Applications of Biomaterials. 2017, Springer. p. 35-63.
38- فرح بخش, ایمان و همکاران، بررسی تاثیر پارامتر مدت زمان آسیاکاری و قطر گلوله بر تشکیل محلول جامد و پوشش مکانیکی سطح در حضور پودر مسی و گلوله نیکلی. فصلنامه علمی - پژوهشی مواد نوین, 2017. 7(3): p. 67-84.
39- Akin, F.A., et al., Preparation and analysis of macroporous TiO2 films on Ti surfaces for bone–tissue implants. Journal of Biomedical Materials Research Part A, 2001. 57(4): p. 588-596.
40-Pätsi, M., et al., Bonding strengths of titania sol-gel derived coatings on titanium. Journal of sol-gel science and technology, 1998. 11(1): p. 55-66.
_||_