سنتز و بررسی خواص نوری و فتوکاتالیستی نانوذرات اکسید روی (ZnO) آلائیده شده با Si و Ti
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینبهزاد کوزه گرکالجی 1 , مهدی موسایی 2
1 - استادیار و عضو هیات علمی دانشکده فنی و مهندسی - گروه مهندسی مواد- دانشگاه ملایر- ملایر- ایران
2 - فارغ التحصیل مقطع کارشناسی ارشد- مهندسی مواد- دانشگاه ملایر
کلید واژه: اکسید روی, تخریب فتوکاتالیستی, خواص نوری, آلاینده تیتانیوم/سیلیسیم,
چکیده مقاله :
در این پژوهش نانوذرات اکسید روی به همراه افزودنیهای Ti (10 درصد مولی) و Si (10 درصد مولی) به روش سل ژل سنتز شد. خواص نمونهها (SZ, TZ, STZ) در مقایسه با اکسید روی خالص (ZnO=Z) مورد بررسی قرار گرفت. روشهای XRD، SEM و UV-VIS برای بررسی فازهای کریستالی، مورفولوژی و اندازه ذرات، خواص نوری و فتوکاتالیستی نانوذرات استفاده شده است. خواص فتوکاتالیستی نمونهها تحت تابش نور فرابنفش و با استفاده از تخریب رنگ متیلن بلو (MB) بهعنوان یکی از آلایندههای رنگی مورد بررسی قرار گرفت. نتایج نشان میدهد، تمامی نمونهها در دمای 450 درجه سانتیگراد از فاز کریستالی اکسید روی تشکیل شده است. اندازه ذرات نمونهها در حضور کاتیون فلزی ریزتر گردیده است. بررسی خواص فتوکاتالیستی نمونهها حاکی از حضور مثبت آلایندههای فلزی برای بهبود خواص فتوکاتالیستی نمونهها میباشد، بهگونهای که در نمونه بههمراه آلاینده همزمان، نسبت به نمونه خالص ZnO و آلاینده جداگانه نمونهها (TZ و SZ)، از بازده فتوکاتالیستی بالاتری برخوردار بوده است.
In this study, zinc oxide nanoparticles were synthesized with the addition of Ti (10% mol) and Si (10% mol) by sol-gel method. The properties of samples contaminated with metal cations (SZ, TZ, STZ) were compared with pure zinc oxide (ZnO = Z). XRD, SEM and UV-VIS methods are used to study crystalline phases, morphology and particle size, optical properties and photocatalytic properties of nanoparticles. Photocatalytic properties of the samples were studied under UV exposure for one hour using methylene blue (MB) as a color contaminant in the textile industry. X-ray diffraction results show that all samples are formed at 450 ° C from the crystalline phase of zinc oxide with a vortex composition. The particle size of the samples in the presence of titanium and silicon metal cations is smaller than that of the zinc oxide sample. Investigation of the optical properties of the samples shows an increase in the band gap of the samples relative to the pure zinc oxide sample. The photocatalytic efficiencies of the samples indicate a positive presence of metal contaminants to improve the photocatalytic properties of the samples, such that in the sample with the simultaneous contaminant (STZ), compared to the pure ZnO sample and the individual contaminants ( TZ and SZ) have a higher photocatalytic efficiency.
References:
1- V. Parmon, A.V. Emeline, and N. Serpone, "Glossary of terms in photocatalysis and radiocatalysis", International. Journal of Photoenergy, Vol. 4, pp. 91-131, 2002.
2- M. Andrew, S.L. Hunte, "An overview of semiconductor photocatalysis." Journal of photochemistry and photobiology A: Chemistry, Vol. 108.1, pp. 1-35, 1997.
3- B. Li, T. Liu, Y. Wang, Z. Wang. “ZnO/graphene oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance”, Journal of Colloid Interface Science, Vol. 377, pp. 114-21, 2012.
4- Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, “Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications” Water Research., Vol. 42, pp. 591-602, 2008.
5- D.Y. Goswami,. "Engineering of solar photocatalytic detoxification and disinfection process." Advances in Solar Energy, Vol. 10, 1995.
6- Z. Chen, X.X. Li, N. Chen, H. Wang, G.P. Du, Y.M. Suen. Andy, “Effect of annealing on photoluminescence of blue-emitting ZnO nanoparticles by sol–gel method” Journal of Sol-Gel Science and Technology, Vol. 62, pp. 252–258, 2012.
7- N. Prastomo, H. Muto, M. Sakai, A. Matsuda, “Formation and stabilization of tetragonal phase in sol–gel derived ZrO2 treated with base-hot-water”, Materials Science and Engineering, B, Vol. 173, pp. 99–104, 2010.
8- J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H.M. Ng, W. Jiang, E.L. Garfunkel, “Ga doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition, Applied Physics Letter, Vol. 83, pp. 3401–3403, 2003.
9- C. Ronning, P.X. Gao, Y. Ding, Z.L. Wang, D. Schwen, “Manganese-doped ZnO nanobelts for spintronics”, Applied Physics Letter, Vol. 84, pp. 783–785, 2004.
10- J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, G. Li, J. Hou, “Indium-doped zinc oxide nanobelts” Chemical Physics. Letter, Vol. 387, pp. 466–470, 2004.
11- L. Zhu, M. Zhi, Z. Ye, B. Zhao, “Catalyst-free two-step growth of quasialigned ZnMgO nanorods and their properties” Applied Physics Letter, Vol. 88, pp. 113106–113113, 2006.
12- R.C. Wang, C.P. Liu, J.L. Huang, S.J. Chen, “Single-crystalline AlZnO nanowires/nanotubes synthesized at low temperature” Applied Physics Letter, Vol. 88, pp. 23111–23113, 2006.
13- N. Palomera, M. Balaguera, S.K. Arya, S. Hernández, M.S. Tomar, J.E. Ramírez- Vick, S.P. Singh, “Zinc oxide nanorods modified indium tin oxide surface for amperometric urea biosensor” Journal of Nanoscience and Nanotechnol, Vol. 11, pp. 6683–6689, 2011.
14- W. Hao, M. Sun, H. Xu, T. Wang, “Al doped ZnO nanogranular film fabricated by layer-by-layer self-assembly method and its application for gas sensors” Journal of Nanoscience and Nanotechnology, Vol. 11, pp. 10649–10653, 2011.
15- P.V. Kamat, M. Flumiani, A. Dawson, "Metal-Metal and Metal-Semiconductor Composite Nanoclusters", Colloids and Surfaces A-Physicochemical and Engineering Aspects, Vol. 202, pp. 269-279, 2002.
16- J.C. Xu, Y.L. Shi, J.E. Huang, B.Wang, H.L. Li, "Doping Metal Ions Only Onto the Catalyst Surface", Journal of Molecular Catalyst A: Chemical, Vol. 219, pp. 351-355, 2004.
17- P. Pandey, R. Kurchania, F.Z. Haque, “Rare Earth Ion (La, Ce, and Eu) Doped ZnO Nanoparticles: Synthesized Via Sol-Gel Method: Application in Dye Sensitized Solar Cells, Optics and Spectroscopy, Vol. 119, No. 4, pp. 666–671, 2015.
18- M. Ramzan Parra, F.Z. Haque, “Structural and optical properties of polyvinyl pyrrolidone modified ZnO nanorods synthesized through simple hydrothermal process, Optik, Vol. 125, pp. 4629–4632, 2014.
19- Y.C. Tseng, Y.J. Lin, H.C. Chang, Y.H. Chen, C.J. Liu, Y.Y. Zou, “ Effects of Ti content on the optical and structural properties of the Ti-doped ZnO nanoparticles“, Journal of Luminescence, Vol. 132, pp. 491–494, 2012.
20- M. Naeem, S. Qaseem, I.H. Gul, A. Maqsood, “Study of active surface defects in Ti doped ZnO nanoparticles”, J. Appl. Phys. Vol. 107, pp. 124303-124307, 2010.
21- J.J. Lu, Y.M. Lu, S.I. Tsai, T.L. Hsiung, H.P. Wang, L.Y. Jang, “Conductivity enhancement and semiconductor-metal transition in Ti-doped ZnO films”, Opt. Mater, Vol. 29, pp. 1548-1552, 2007.
22- Y.R. Park, K.J. Kim, “ Optical and electrical properties of Ti-doped ZnO films: observation of semiconductor-metal transition”, Solid State Commun. Vol.123, pp. 147-150, 2002.
23- G. Bajpai, T. Srivastava, S. Kumar, P. Shirage, and S. Sen, “Structure, electronic and photoluminescence study of Si doped ZnO nano-particles”, Materials Science and Engineering Vol. 149, pp. 1-7, 2016.
24- R.W. Baker, Membrane technology and application. Wiley Pub, Chichester, 2004.
25- S. Cho, “optical properties of ZnO films grown on sapphire substrates subjected to substrate temperature”, J. Korean Phys. Soc. Vol. 49 (3), pp. 985-988, 2006.
26- J.J. Lu, Y.M. Lu, S.I. Tsai, T.L. Hsiung, H.P. Wang, L.Y. Jang, “Conductivity enhancement and semiconductor-metal transition in Ti-doped ZnO film”, Opt. Mater. Vol. 29, pp. 1548-1552, 2007.
27- R. Chowdhury, P. Rees, S. Adhikari, S.P. Wilks. “Electronic structures of silicon doped ZnO, Physica B Condensed Matter, Vol. 405, pp. 1980-1985, 2010.
28- الف. حیدری، م. جعفری و ع. صفار تلوری، "سنتز و مشخصه یابی کامپوزیت های نانوکریستالی اکسیدروی با سطح ویژه بالا نشانده شده در زمینه سیلیکا- آلومینا به روش سل ژل"، مجله مواد نوین، دوره 4، شماره 13، ص 1-12، 1392.
29- C. Vatankhah, A. Ebadi. “Quantum Size Effects on Effective Mass and Band gap of Semiconductor Quantum Dots” Research Journal of Recent Sciences, Vol. 2, pp. 21-24, 2013.
30- S.M. Soosen, K.C George, “Optical properties of ZnO nanoparticles” SB Academic Review, pp. 57-65, 2009.
31- Y.C. Tseng, Y. Li, H.C. Chang c, Y.H. Chen, C.J. Liu, Y.Y. Zou, “Effects of Ti content on the optical and structural properties of the Ti-doped ZnO nanoparticles”, Journal of Luminescence, Vol. 132, pp. 491–494, 2012.
_||_