برآورد استحکام فشاری ماسه ریخته گری در مقادیر گوناگون رطوبت با استفاده از شبکه عصبی مصنوعی
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینرامین مشک آبادی 1 , غلام رضا مرامی 2 , کمال جهانی 3
1 - مربی گروه مکانیک، دانشگاه آزاد اسلامی واحد اهر
2 - کارشناس ارشد مهندسی مکاترونیک، دانشگاه تبریز.
3 - استادیار، دانشکده مهندسی مکانیک، دانشگاه تبریز.
کلید واژه: ماسه ریخته گری, رطوبت, استحکام فشاری, شبکه عصبی مصنوعی,
چکیده مقاله :
کیفیت قطعات ریخته گری در قالب گیری ماسه به گونهای چشم گیر به خواص ماسه مورد استفاده از قبیل استحکام فشاری، نفوذپذیری، سختی قالب و... بستگی دارد که این خواص نیز به پارامترهایی مانند رطوبت، اندازه و شکل دانه ماسه، میزان چسب و... بستگی دارند. در این مقاله، تعداد 84 آزمایش عملی برای بدست آوردن داده های مورد نیاز برای شبیه سازی که همان استحکام فشاری ماسه در درصد رطوبت های معین بودند، انجام گرفته است و روش پژوهش بر مبنای استفاده از مدل های شبکه عصبی بمنظور برآورد استحکام در درصدهای رطوبت دیگر می باشد. مقایسه نتایج بدست آمده از مدل با نتایج آزمایش های عملی جدید نشان می دهند که با استفاده از شبکه عصبی میتوان با دقت بالایی استحکام فشاری ماسه را پیش از استفاده برای قالب گیری تا میزان خطای کمتر از 1% تخمین زد.
The quality of parts in green sand mold casting mostly depends on the green sand properties such as compressive strength, permeability, mould hardness, etc. These parameters depend on input parameters like water, size and shape of the sand, percentage of bentonite and so on. The compressive strength of sand of different moisture contents which is required for modeling, obtained by experimental tests, and a research method, based on Artificial Neural Network (ANN). The predicted values of the compressive strength obtained by the ANN and new experiments found to be in good agreement with each other and showed that by using Artificial Neural Networks one can estimate the compressive strength of green sand precisely before molding.
1- K.G. Swift and J.D. Booker, Casting
Processes, Manufacturing Process
Selection Handbook, pp. 61-91, 2013.
2- Y. Chang, and H. Hocheng, "The
flow ability of moldings sand", Journal
of Materials Processing Technology,
Vol.113, pp. 238- 244, 2001.
3- R. R. Kundu, and B.N. Lahiri,
"Study and Statistical Modeling of
Green Sand Mould Properties Using
RSM", International Journal of
Materials and Product Technology,
Vol. 31, No. 2-4, pp.143-158, 2008.
4- Benny Karunakar, D., Datta, and
G.L., "Controlling Green Sand Mould
Properties Using Artificial Neural
Networks and Genetic Algorithms - A
Comparison ", Applied Clay Science,
Vol. 37, No. 1-2, pp. 58-66. , 2007.
5- N. Nagurbabu, R.K.Ohdar, and P.T.
Push, "Application of Intelligent
Techniques for Controlling the Green
Sand Properties ", Proceeding of 55th
Indian Foundry Congress, pp.178-186,
2007.
6- M. B. Parappagoudar, D.K. Pratihar,
and G. L. Datta, "Forward and reverse
Mappings in Green Sand Mould
System Using Neural Networks",
Applied Soft Computing, Vol.8,
pp.239–260, 2008.
7- D. B. Karunakar, and G.L. Datta,
"Modeling and Optimization of Green
Sand Mould Parameters Using Genetic
Algorithms", Transactions of Institute
of Indian Foundry Men, Vol.51, pp.
262–267, 2003a.
8- D. B. Karunakar, and G.L. Datta,
"Modeling of green sand mould
parameters using artificial neural
networks", Indian Foundry Journal,
Vol.49, No.12, pp. 27–36, 2003b.
9 -ح. مناجاتی زاده، د. آصفی، ا. قدمیار، م. م. عقیده، ا.
انصاری پور و احمد رضا سـلیمی، " بررسـی و تحلیـل
تأثیر شرایط تولید بر مقاومت به ضربه فولادهای میکرو
آلیاژی مورد استفاده در لوله سازی با استفاده از شبکه
عصبی،" مجله علمی – پژوهشی مواد نوین، شـماره 7،
.1391 بهار، 10-1 ص
10- M.J. Attalla, and D.J. Inman, "On
Model Updating Using Neural
Networks", Journal of Mechanical
Systems and Signal Processing, Vol.12,
No.1, pp.135-161, 1998.
11- Mold and Core Test Handbook, 6th
Edition, American Foundry Society
(AFS), 2012.
12- C. Saikaew, and S. Wiengwiset,
”Optimization of Molding Sand
Composition for Quality Improvement
of Iron Castings”, Applied Clay
Science, Volumes 67–68, pp. 26-31,
2012.
13 -م. ح. فتحی ، " مواد قالبگیری برای ریختـه گـری
فلـــــزات "، نـــــشر ارکـــــان ، تهـــــران، 1386.
_||_