بررسی و شبیهسازی آزمون سوراخکاری شبهاستاتیک در پنلهای ساندویچی با هسته فوم کامپوزیتی Al A356/SiCp
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینمسعود گلستانی پور 1 * , ابوالفضل باباخانی 2 , سید مجتبی زبرجد 3
1 - استادیار گروه پژوهشی مواد و موسسه علمی کاربردی جهاد دانشگاهی خراسان رضوی.
2 - دانشیار گروه مواد و متالورژی، دانشکده مهندسی، دانشگاه فردوسی مشهد.
3 - استاد بخش مهندسی متالورژی دانشکده مهندسی دانشگاه شیراز.
کلید واژه: فوم آلومینیومی, جذب انرژی, پنل ساندویچی, آنالیز المان محدود, سوراخکاری شبهاستاتیک,
چکیده مقاله :
پنلهای ساندویچی با هسته فوم آلومینیوم یا کامپوزیت زمینه آلومینیومی، ساختارهایی سبک با قابلیت جذب انرژی هسـتند که در کاربردهای حـفاظت در برابر ضـربه نظیـر پنلهای سـاختمانی سبک، مواد بستهبندی و جاذبهای انرژی کاربرد دارند. در این پژوهش از آزمون تجربی سوراخکاری شبهاستاتیک روی نمونههای پنل ساندویچی با هسته فوم کامپوزیتی Al A356/SiCp ، صفحه هایی از جنس آلومینیوم 1100 ، نمونه صفحه های بدون هسته فومی و فوم کامپوزیتی بدون حضور صفحه ها استفاده شد. فرورونده بکار رفته از جنس فولاد و دارای سر مخروطی شکل با زاویه 60 درجه، قطر 10 میلی متر و با سرعت سوراخکاری بسیار پایین و برابر با 02/0 میلیمتر بر ثانیه انتخاب شد. نتایج تجربی نشان دادند که استفاده همزمان از صفحه ها و هسته فومی در قالب پنل ساندویچی تاثیری شایان توجه در افزایش مقدار جذب انرژی به وسیله پنل دارد. افزون بر ایـن، مشخص شـد که با افـزایش ضخامت هسته فومی و صفحه ها، بیشینه نیروی سوراخکاری و انرژی جذب شده به وسیله نمونه افزایش مییابد. در ادامه آنالیز المان محدود با استفاده از نرمافزار ABAQUS 6.12 بمنظور شبیهسازی آزمون سوراخکاری شبهاستاتیک با شرایطی مشابه با شرایط آزمون تجربی روی مدلهایی از نمونههای یاد شده انجام گرفت. نتایج شـبیهسازی شامل تـوزیع تنش روی مدلها، منحنی نیرو- جابهجایی، بیشینه نیروی سوراخکاری و نیز انرژی جذب شده به وسیله نمونهها ارایه گردید و مشخص شد که نتایج بدست آمده از شبیهسازی در مدلهای پنل ساندویچی تطابق مطلوبی با یافتههای بدست آمده از آزمون تجربی دارد.
Aluminium and aluminium base composite foam core sandwich panels are good energy absorbers for impact protection applications, such as light-weight structural panels, packing materials and energy absorbing devices. In this study, quasi-static perforation tests were carried out on sandwich structures with Al A356/SiCpcomposite foam core andAl 1100 aluminium face-sheets, face-sheets without foam core and aluminium foam without face-sheets. For these tests a 10 mm diameter 60oconical nosed indenter with very low displacement velocity (0.02 mm/sec) was used. The results showed significant increase on energy absorption of sandwich structures in comparison with witness samples. Also increasing foam core and face-sheet thickness leaded to gain higher piercing force and more absorbed energy. Further, explicit finite element (FE) analyses of quasi-static perforation on panels were performed using ABAQUS 6.12. The stress distribution, force-displacement curve, peak piercing fore and energy absorption of different structures were presented. The numerical prediction was found to be in good agreement with the experiments.
1- M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley, “Metal Foams-A Design Guide”, Butterworth-Heinemann, London, 2000.
2- J. Banhart, “Manufacture, characterization and Application of Cellular Metals and Metallic Foams”, Progress in Material Science, Vol. 46, pp. 559-632, 2001.
3- H.P. Degischer,and B. Kriszt, “Handbook of Cellular Metals”, Weinheim, Wiley-VCH, 2002.
4- J. Banhart, and H.W. Seeliger, “Aluminium Foam Sandwich Panels: Manufacture, Metallurgy and Applications”, Advanced Engineering Materials, Vol. 10, pp. 793-802, 2008.
5- W. Hou, F. Zhu, G. Lu, and D.N. Fang, “Ballistic Impact Experiments of Metallic Sandwich Panels with Aluminium Foam Core”, International Journal of Impact Engineering, Vol. 37, pp. 1045-1055, 2010.
6- K. Mohan, H. P. Seow, I. Sridhar, and T. H. Yip, “Effects of Face Sheet Material in the Indentation Response of Metallic Foams”, Journal of Materials Science and Engineering, Vol. 42, pp.3714-3723, 2007.
7- G. Lu, J. Shen, W. Hou, D. Ruan, and L. S. Ong, “Dynamic Indentation and Penetration of Aluminum Foams”, International Journal of Mechanical Sciences, Vol. 50, pp.932-943, 2008.
8- D. Ruan, G. Lu, and Y. C. Wong, “Quasi-Static Indentation Tests on Aluminum Foam Sandwich Panels”, Composite Structures, Vol. 92, pp.2039-2046, 2010.
9- Z. Xie, Z. Zheng,and J. Yu, “Localized Indentation of Sandwich Panels with Metallic Foam Core: Analytical Models for Two Types of Indenters”, Composites: Part B, Vol. 44, pp. 212-217, 2013.
10- مسعود گلستانی پور، مینو توکلی، سید مجتبی زبرجد، ابوالفضل باباخانی، بهروز نادری "بررسی جذب انرژی پنلهای ساندویچی با هسته فوم آلومینیوم تحت آزمون سوراخکاری"، مجله مواد نوین، جلد 3، شماره 2، صفحه 38-25، زمستان 1391.
11- مسعود گلستانیپور، سیمین دوراندیش، سهیلا تدینی، ابوالفضل باباخانی، سید مجتبی زبرجد، بهروز نادری، "بررسی تغییرشکل پنل ساندویچی با هسته فوم آلومینیومی تحت آزمون سقوط پرتابه"، فصلنامه فرایندهای نوین در مهندسی مواد، سال هشتم، شماره 2،صفحه 97-87، تابستان 1393.
12- M. Golestanipour, H. AminiMashhadi, M. S. Abravi, M. Malekjafarian, and M. H. Sadeghian, “Manufacturing of Al/SiCp Composite Foams Using Calcium Carbonate as Foaming Agent”, Materials Science and Technology, Vol. 27, pp. 923-927, 2011.
13- JIS H 7902 Standard, “Method for Compressive Test of Porous Metals”, 2008.
14- DIN 50134 Standard, “Testing of Metallic Materials-Compression Test of Metallic Cellular Materials”, 2008.
15- مسعودگلستانیپور،ابوالفضل باباخانی، سید مجتبی زبرجد، "بررسی و شبیهسازی استحکام برشی اتصال چسبی در پنلهای ساندویچی با هسته فوم آلومینیومی تولید شده به روش ذوبی با عامل فومساز"، فصلنامه فرایندهای نوین در مهندسی مواد، پذیرفته شده و در نوبت چاپ.