تهیه و مشخصهیابی هیدروژل ژلاتین-سدیم آلژینات با تمرکز بر بهبود رفتار رئولوژی و قابلیت چاپ سهبعدی
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینرسول اسمعیلی نیسیانی 1 , علی اشتریان 2 , فرشته حسن زاده افروزی 3 , علی خوش سیما 4
1 - استادیار، گروه مهندسی پلیمر، دانشگاه حکیم سبزواری، سبزوار، ایران
2 - دانشجو دوره دکتری، گروه مهندسی مواد، دانشگاه حکیم سبزواری، سبزوار، ایران
3 - محقق پسا دکتری، گروه مهندسی پلیمر، دانشگاه حکیم سبزواری، سبزوار، ایران
4 - دانشیار، گروه مهندسی نفت، دانشگاه حکیم سبزواری، سبزوار، ایران
کلید واژه: هیدروژل, ژلاتین, سدیم آلژینات, چاپ سه بعدی,
چکیده مقاله :
مقدمه: از میان دسته وسیعی از پلیمرهای طبیعی و سنتزی، ژلاتین و سدیم آلژینات برای تهیه هیدروژل ها مورد توجه بسیار قرار گرفتهاند. همچنین چاپ سه بعدی به عنوان یک روش افزایشی تولید با ساختارهای دقیق و متخلخل در مهندسی بافت بسیار مورد توجه است که چاپ هیدروژلها به دلیل تغییر رفتار رئولوژیکی دارای مشکلات فراوانی بوده است. روش: در این پژوهش هیدروژلهای ژلاتین و آلژینات در ترکیب درصد متفاوت تهیه شد. ساختار شیمیایی هیدروژلها، میزان تورم و نرخ تخریب و ویسکوزیته آنها در نرخ برش متفاوت اندازهگیری شد. بر اساس نتیجه آزمون رئولوژیکی، چاپ پذیری نمونه مورد ارزیابی قرار گرفت. یافتهها: نتایج آزمون طیف سنجی مادون قرمز نشان داد که حضور همزمان این دو پلیمر در ساختار هیدروژل باعث ایجاد برهمکنش های فیزیکی می شود. نتایج آزمون تورم و تخریب نشان داد، افزایش میزان ژلاتین در ساختار هیدروژل باعث افزایش جذب آب (215%) و افزایش نرخ تخریب هیدروژل می گردد. همچنین نتایج اندازهگیری ویسکوزیته نشان داد هیدروژلهای خالص ژلاتین و آلژینات دارای رفتار برشی بسیار ناچیز رقیق شونده هستند در حالی که ترکیب این دو هیدروژل باعث ایجاد یک سری برهمکنش های برگشت پذیر و تغییر در حجم آزاد در ساختار هیدروژل شده که باعث ایجاد رفتار برشی رقیق شونده و کاهش 10 برابری ویسکوزیته در هیدروژل میشود. نتیجهگیری: هیدروژل تهیه شده از ترکیب ژلاتین و سدیم آلژینات با توجه به قابلیت مناسب جذب آب، نرخ تخریب و رفتار رئولوژیکی میتواند به عنوان یک جوهر زیستی در فرآیند چاپ سه بعدی برای کاربردهای مهندسی بافت مورد استفاده قرار گیرد.
Introduction: Among a wide range of natural and synthetic polymers, gelatin and sodium alginate have received much attention for the preparation of hydrogels. In addition, 3D printing is of great interest with the ability to fabricate precise and porous structures for tissue engineering, as the printing of hydrogels showed many problems due to the change in rheological behavior.
Methods: In this research, gelatin and sodium alginate hydrogels were prepared in different percentage compositions. The chemical structure of the prepared hydrogels was investigated by FTIR tests. Moreover, the swelling rate and degradation rate of hydrogels were evaluated. The viscosity of hydrogels was evaluated at different shear rates. Based on the result of the rheological test, the printability of the sample was investigated.
Findings: The FTIR results showed that the simultaneous presence of these two polymers in the hydrogel structure causes physical interactions. The results of the swelling and degradation test indicated that increasing the amount of gelatin in the hydrogel structure increased water absorption (up to 215%) and the degradation rate of the hydrogel. Additionally, the viscosity measurement results showed the pure gelatin and alginate hydrogels have low shear thinning behavior, while the combination of these two hydrogels resulted in a series of reversible interactions and changes in free volume in the hydrogel structure, which caused shear thinning behavior with 10-fold decrease in the viscosity of the hydrogel.
1. Rayati Shavazi MR, Mahmoodi M, Nasirizadeh N. Synthesis and Characterization of Temperature‐Sensitive Hydrogel Copolymer Based on N-isopropylacrylamide for Medical Applications. journal of New Materials. 2017;7(27):15-26.
2. Hafezi M, Khorasani SN, Khalili S, Neisiany RE. Self-healing interpenetrating network hydrogel based on GelMA/alginate/nano-clay. International Journal of Biological Macromolecules. 2023;242:124962.
3. Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Advances in Colloid and Interface Science. 2024;331:103232.
4. Andreazza R, Morales A, Pieniz S, Labidi J. Gelatin-Based Hydrogels: Potential Biomaterials for Remediation. Polymers. 2023; 15(4):1026.
5. Mhd Sarbon N, Badii F, Howell NK. Preparation and characterisation of chicken skin gelatin as an alternative to mammalian gelatin. Food Hydrocolloids. 2013;30(1):143-51.
6. Günter EA, Melekhin AK, Belozerov VS, Martinson EA, Litvinets SG. Preparation, physicochemical characterization and swelling properties of composite hydrogel microparticles based on gelatin and pectins with different structure. International Journal of Biological Macromolecules. 2024;258:128935.
7. Jiang S, Deng J, Jin Y, Qian B, Lv W, Zhou Q, et al. Breathable, antifreezing, mechanically skin-like hydrogel textile wound dressings with dual antibacterial mechanisms. Bioactive Materials. 2023;21:313-23.
8. یزدانی آ, نوربخش ا. " تولید داربست هیدروکسیآپاتیت - اسید هیالورونیک به روش تبخیر حلال " فصلنامه علمی - پژوهشی مواد نوین، دوره 10، شماره 36، 1398، 133-140.
9. Murab S, Gupta A, Włodarczyk-Biegun MK, Kumar A, van Rijn P, Whitlock P, et al. Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues. Carbohydrate Polymers. 2022;296:119964.
10. Wierzbicka A, Bartniak M, Waśko J, Kolesińska B, Grabarczyk J, Bociaga D. The Impact of Gelatin and Fish Collagen on Alginate Hydrogel Properties: A Comparative Study. Gels. 2024; 10(8): 491.
11. Bertuola M, Aráoz B, Gilabert U, Gonzalez-Wusener A, Pérez-Recalde M, Arregui CO, et al. Gelatin–alginate–hyaluronic acid inks for 3D printing: effects of bioglass addition on printability, rheology and scaffold tensile modulus. Journal of Materials Science. 2021;56(27):15327-43.
12. Giuseppe MD, Law N, Webb B, A. Macrae R, Liew LJ, Sercombe TB, et al. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Journal of the Mechanical Behavior of Biomedical Materials. 2018;79:150-7.
13. Ren P, Wei D, Liang M, Xu L, Zhang T, Zhang Q. Alginate/gelatin-based hybrid hydrogels with function of injecting and encapsulating cells in situ. International Journal of Biological Macromolecules. 2022;212:67-84.
14. Ashtariyan A, Khorsand H, Bavarsiha F. 3D printed Sr-HA/PCL scaffolds: Fabrication via liquid solvent technique. Polymers for Advanced Technologies. 2023;34(7):2355-68.
15. Alruwaili M, Lopez JA, McCarthy K, Reynaud EG, Rodriguez BJ. Liquid-phase 3D bioprinting of gelatin alginate hydrogels: influence of printing parameters on hydrogel line width and layer height. Bio-Design and Manufacturing. 2019;2(3):172-80.
16. Piao Y, You H, Xu T, Bei H-P, Piwko IZ, Kwan YY, et al. Biomedical applications of gelatin methacryloyl hydrogels. Engineered Regeneration. 2021;2:47-56.
17. Piola B, Sabbatini M, Gino S, Invernizzi M, Renò F. 3D Bioprinting of Gelatin–Xanthan Gum Composite Hydrogels for Growth of Human Skin Cells. International Journal of Molecular Sciences. 2022; 23(1):539.
18. Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J, Detyna J, Michalak I. A Review on the Adaption of Alginate-Gelatin Hydrogels for 3D Cultures and Bioprinting. Materials. 2021; 14(4): 858.
19. Krishnamoorthy S, Zhang Z, Xu C. Biofabrication of three-dimensional cellular structures based on gelatin methacrylate–alginate interpenetrating network hydrogel. Journal of Biomaterials Applications. 2019;33(8):1105-17.
20. Ma C, Choi J-B, Jang Y-S, Kim S-Y, Bae T-S, Kim Y-K, et al. Mammalian and Fish Gelatin Methacryloyl–Alginate Interpenetrating Polymer Network Hydrogels for Tissue Engineering. ACS Omega. 2021;6(27):17433-41.
21. Aldana AA, Valente F, Dilley R, Doyle B. Development of 3D bioprinted GelMA-alginate hydrogels with tunable mechanical properties. Bioprinting. 2021;21:e00105.
22. شاه نظری ز, کوپائی ن. "ساخت و مشخصه یابی داربست شبکه ای مهندسی بافت بر پایه پلی کاپروالکتون دی ال /پلی اتیلن گالیکول دی آکریالت /هیدروکسی آپاتیت" فصلنامه علمی - پژوهشی مواد نوین، دوره 10ف شماره 37، 1398، 33-46.
23. Dalal SR, Hussein MH, El-Naggar NE-A, Mostafa SI, Shaaban-Dessuuki SA. Characterization of alginate extracted from Sargassum latifolium and its use in Chlorella vulgaris growth promotion and riboflavin drug delivery. Scientific Reports. 2021;11(1):16741.
24. Kang D, Liu Z, Qian C, Huang J, Zhou Y, Mao X, et al. 3D bioprinting of a gelatin-alginate hydrogel for tissue-engineered hair follicle regeneration. Acta Biomaterialia. 2023;165:19-30.
25. Kulig D, Zimoch-Korzycka A, Jarmoluk A, Marycz K. Study on Alginate–Chitosan Complex Formed with Different Polymers Ratio. Polymers. 2016; 8(5): 167.
26. Abedi K, Keshvari H, Solati-Hashjin M. Extrusion-based bioprinting: considerations toward gelatin-alginate bioink. Rapid Prototyping Journal. 2024;30(6):1094-104.
27. Bäther S, Seibt JH, Hundschell CS, Bonilla JC, Clausen MP, Wagemans AM. Phase behaviour and structure formation of alginate-gelatin composite gels. Food Hydrocolloids. 2024;149:109538.
28. Palma JH, Bertuola M, Hermida ÉB. Modeling calcium diffusion and crosslinking dynamics in a thermogelling Alginate-Gelatin-Hyaluronic acid ink: 3D bioprinting applications. Bioprinting. 2024;38:e00329.