حذف رنگ از محلولهای آبی توسط پنتا آزا تترا اتیلن ساپورت شده بر روی پلی اکریل آمید به عنوان یک جاذب جدید: بررسی سینتیک و ایزوترم جذبی
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینمریم ایران پور 1 * , محمد علی زارع 2 , عبدالحمید فدوی 3 , معصومه عمادی 4
1 - باشگاه پژوهشگران جوان و نخبگان، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
2 - باشگاه پژوهشگران جوان و نخبگان، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران
3 - گروه شیمی، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران
4 - گروه شیمی، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران
کلید واژه: سینتیک, بروموکروزول سبز, جاذب, ایزوترم تعادلی,
چکیده مقاله :
هدف این تحقیق، حذف مولکولهای رنگ بروموکروزل سبز[1] (BCG) از محلولهای آبی میباشد. جاذب پلی اکریل آمید اصلاح شده با پنتا آزا تترا اتیلن (PATE-N5) برای حذف رنگ بروموکروزول سبز به عنوان یک رنگ صنعتی از محلولهای آبی استفاده شده است. آزمونها به روش غیر جاری[2] با استفاده از پارامترهای مختلفی مانند pH، زمان تماس، مقدار جاذب و غلظت اولیه رنگ استفاده شده است و خصوصیات جاذب (PATE-N5) با استفاده از دستگاه FTIR مورد آنالیز قرار گرفته است. دادههای تجربی به دست آمده با مدلهای سینتیکی مختلف شامل مرتبه درجه اول، مرتبه درجه دوم، نفوذ درون ذرهای و الوویچ مورد بررسی قرار گرفت، نتایج نشان داد که دادههای تجربی به دست آمده با مدل سینتیکی مرتبه دوم تطابق مطلوبی دارند. مطالعه ایزوترم تعادلی بهوسیله مدلهای لانگمیر، فرندلیچ و تمکین آنالیز شد. آنالیز نتایج نشان داد که جذب رنگ توسط جاذب (PATE-N5) اصلاح شده تطابق مطلوبی با معادله تمکین در دمای 25 درجه سانتیگراد دارد. بیشینه ظرفیت جذب برای غلظت اولیه 76 میلیگرم بر لیتر، 87/101 میلیگرم بر گرم به دست آمد.
[1]- Bromocresol green
[2]- Batch
Modified cross-linked polyacrylamide (PAA) with penta aza tetra ethylene group was used for the removal of Bromocroso green (BCG), industrial dye from aqueous solutions. Batch mode experiments were conducted using various parameters such as pH, contact time, amount of adsorbent and BCG concentration and characterized with FTIR analyses. Fitting the experimental data to different kinetic models including pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion kinetic models show the suitability of the pseudo-second-order kinetic model to interpret in the experimental data. The experimental isotherm data were analyzed using Langmuir, Freundlich and Temkin isotherm models. The results showed that the adsorption behavior of BCG on modified adsorbent were well-fitted with the Temkin model at 25˚C. The maximum adsorption capacity was 101.87 mg/g for initial concentration 76 mgL-1.
[1]- C.M. Kao, , M.S. Chou, W.L. Fang, , B.W Liu, B.R. Huang, Regulating colored textile wastewater by 3/31 wavelength admi methods in Taiwan, Chemosphere 44 1055–1063 (2001).
2- G. Crini, Non-conventional low-cost adsorbents for dye removal: a review
, Bioresour. Technol. 97 1061–1085(2005).
3- M.M. Haque, M. Muneer, TiO2-mediated photocatalytic degradation of a textile dye derivative, bromothymol blue, in aqueous suspensions, Dyes Pigments 75 443–448 (2007).
4- W. Somasiri, , X. Li, W. Ruan, C. Jian, “Evaluation of the efficacy of up-flow anaerobic sludge blanket reactor in removal of color and reduction of COD in real textile wastewater”, Bioresource Technology, 99(9) 3692–3699(2007).
5- D. Wouter, O. Cliona, R.H. Freda, M.P. Helena, “Anaerobic treatment of textile effluents: a review”, J. Chem. Technol. Biotechnol., 73 (6) 323–335(1998).
6- A. Alinsafi, M. Khermis, M.N. Ponsa, Electro-coagulation of reactive textile dyes and textile wastewater. Chemical Engineering and Processing, 44 461-470 (2005).
7- U. Kurt, O. Apaydid, M. Talha Gonullu, Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process.Hazardous materials, (1- 2) 33-40(2007).
8- N. Bellakhal, M. Dachraoui, M. Oturan, Degredation of tartrazine in water by electro-fenton process. de la Société Chimique de Tunisie ,8 223-228(2006).
9- M.A. Oturan, I. Sires, S. Perocheau, Sonoelectro-Fenton process: A novel hybrid technique for the destruction of organic pollutants in water. Electroanalytical chemistry, 624 (1-2) 329-322 (2008).
10- A. Ventura, G. Jacquet, A. Bermond, V. Camel, Electrochemical generation of the Fenton's reagent: application to atrazine degradation. Water research, 36(14) 3517-3522 (2002).
11- Z. Bouberka, A. Khenifi., F. Sekrane, N. Bettahar, Z. Derriche., “Adsorption of Direct Red 2 on bentonite modified by cetyltrimethylammonium bromide”, Chemical Engineering Journal, 136 (2-3) 295–30 (2008).
12- M. Robert, C. Sanjeev, “Adsorption and biological decolourisation of azo dye reactive red 2 in semicontinuous anaerobic reactors”, Process Biochemistry., 40 (2) 699–705(2005).
13- ذ. کافی، ح. گنجی دوست، ب. آیتی، حذف رنگ از محلول آبی با خاک اره و رس بنتونیت، مجله علمی پژوهشی عمران مدرس ، دوره یازده، شماره 3، صفحه 67-76، پاییز 90.
14- E.R. Trotman, Dyeing and chemical technology of textile fibres, 6th ed., Charles Griffin and Company Ltd, London, 149 (1984).
15- D. Diamond, K.T. Lau, S. Brady, J. Cleary, Talanta, Integration of analytical measurements and wireless communications--current issues and future strategies, 75 606–612 (2008).
16- T.H. Kim, C. Park, J. Yang, S. Kim, Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation, J. Hazard. Mater. 112 95–103 (2004).
17- Z. Shen, W. Wang, J. Jia, J. Ye, X. Feng, A. Peng, Degradation of dye solution by an activated carbon fiber electrode electrolysis, J. Hazard. Mater. 84 107–116 (2001).
18- S. Chatterjee, M.W. Lee, S.H. Woo, adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes, Bioresour. Technol. 101 1800–1806 (2010).
19- M. Ghaedi, A. Hassanzadeh, S. Nasiri Kokhdan, Multiwalled Carbon Nanotubes as Adsorbents for the Kinetic and Equilibrium Study of the Removal of Alizarin Red S and Morin, J. Chem. Eng. Data 56 2511–2520 (2011).
20- M. Ghaedi, S. Ramazani, M. Roosta, Gold nanoparticle loaded activated carbon as novel adsorbent for the removal of Congo red, Indian J. Sci. Technol. 4 1208–1217 (2011).
21- F.A. Pavan, S.L.P. Dias, E.C. Lima, E.V. Benvenutti, Removal of Congo red from aqueous solution by anilinepropylsilica xerogel, Dyes Pigments 76 64–69 (2008).
22- E. Demirbas, M. Kobya, M.T. Sulak, Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon, Bioresour. Technol. 99 5368–5373 (2008).
23- B.H. Hameed, A.L. Ahmad, K.N.A. Latiff, “Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust”, Dyes and Pigments, 75 (1) 143-149 (2007).
24- A. Dalvand, R. Nabizadeh, M. R. Ganjali, M. Khoobi, S. Nazmara, A. H. Mahvi, Modeling of Reactive Blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: Optimization, reusability, kinetic and equilibrium studies, Journal of Magnetism and Magnetic Materials 404 179–189 (2016).
25- J. Tian, P. Tian, H. Pang, G. Ning, R. F. Bogale, H. Cheng, S. Shen, Fabrication synthesis of porous Al2O3 hollow microspheres and its superior adsorption performance for organic dye, Microporous and Mesoporous Materials 223 27-34 (2016).
26- F. Liu, H. Zou, J. Hu, H. Liu, J. Peng, Y. Chen, F. Lu, Y. Huo, Fast removal of methylene blue from aqueous solution using porous soy protein isolate based composite beads, Chemical Engineering Journal 287 410–418 (2016).
27- P. Sun, C.Hui, S. Wang, L. Wan, X. Zhang, Y. Zhao, Bacillus amyloliquefaciens biofilm as a novel biosorbent for the removal of crystal violet from solution, Colloids and Surfaces B: Biointerfaces, 139 164–170(2016).
28- M. A. Zare, M. Emadi, R. Karimi haghighi, M. S. Moaddeli, and M. Edalati., The Study of Kinetic and Biosorption of Pb Ion by Rice Husk from Wastewater. Journal of Physical Chemistry and Electrochemistry. 2 49-55 (2013).
29- S. Vafakhah, M. E. Bahrololoom, R. Bazargan Lari and M. Saeedikhani, Studying the Adsorption Behavior of Copper (II) Ions from Industrial Waste Water Solutions Using Corncob
Particales, J. New Materials, 4, 35-45 (2013).
30- M. Soylak, Y.E. Unsal, E. Yilmaz, M. Tuzen, Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction, Food Chem. Toxicol. 49 1796–1799 (2011).
31- M. Soylak, Y.E. Unsal, M. Tuzen, Spectrophotometric determination of trace levels of allura red in water samples after separation and preconcentration, Food Chem. Toxicol. 49 1183–1187 (2011).
32- S. Lagergren, Zur Theorie der sogenannten Adsorption geloster Stoffe [On the theory of so-called adsorption of solutes], K. Sven. Vetenskapsakad. Handl. 24 1–39.
33- Y. S. Ho, G. McKay, Kinetic models for the sorption of dye from aqueous solution by wood, Process Saf. Environ. Prot. 76 (1998) 183–191 (1898).
34- Y. S. Ho, G. McKay, Batch Lead (II) Removal from Aqueous Solution by Peat: Equilibrium an d Kinetic, Trans. J. Chem. E. 77 165 (1999).
35- I. Langmuir, Adsorption of gases on plain surfaces of glass mica platinum. J. Am.Chem. Soc. (1918) 40: 136-403.
36- H. M. F. Freundlich, Over the adsorption in solution. J. Phys. Chem..57: 385-470 (1906).
37- , K. K. H. Choy, G. McKay, and J. F. Porter. Sorption of acid dyes from effluents using activated carbon. Resour. Conserv. Recycl 27: 57-71 (1999).
38- , C. Aharoni, and M. Ungarish. Kinetics of activated chemisorption. Part 2. Theoretical models. Journal of the Chemical Society Faraday Transactions. 73: 456 (1977).
39- Metcalf & Eddy, Inc., “Wastewater Engineering treatment and reuse”, McGraw-Hill Higher Education, U.S.A , 2003.
40- M. Ghaedi, H. Khajesharifi, A. H. Yadkuri, M. Roosta, R. Sahraei, A. Daneshfar, Cadmium hydroxide nanowire loaded on activated carbon as efficient adsorbent for removal of Bromocresol Green, Spectrochimica Acta Part A 86 62–68 (2012).
41- A. Shokrollahi, A. Alizadeh, Z. Malekhosseini, and M. Ranjbar, Removal of Bromocresol Green fromAqueous Solution via Adsorption on Ziziphus nummularia as a New, Natural, and Low-Cost Adsorbent: Kinetic and Thermodynamic Study of Removal Process, J. Chem. Eng. Data, 56 (10), 3738–3746 , 2011.
42- M. Ghaedi, H. Khajesharifia, A. Hemmati Yadkuri, M. Roosta, R. Sahraei, A. Daneshfarb, Cadmium
hydroxide nanowire loaded on activated carbon as efficient adsorbent for removal of Bromocresol Green, Spectrochimica Acta Part A 86 ,62–68(2012).
43- A. Shukla, Y.H. Zhang, P. Dubey, J.L. Margrave, S.S. Shukla, “The role of sawdust in the removal of unwanted materials from water”, Journal of Hazardous Materials, 95 (1-2): 137–152 (2002).
44- M. Ozacar, I.A. Sengil, “Adsorption of metal complex dyes from aqueous solution by pine sawdust", Bioresource Technology, 96 (7): 791–795 (2005).
45- S. Koner, B. Kumar Saha, R. Kumar, A. Adak, Adsorption Kinetics and Mechanism of Methyl Orange Dye On Modified Silica Gel Factory Waste, Int. J. Curr. Res. 33, 128–133 (2011).
46- R. Rabia, M. Tariq, A. Jamil, S. Muhammad, S. Umer, Z. Waheed, A. Furqan, Removal of Alizarin Red S (Dye) from Aqueous Media by using Alumina as an Adsorbent, J. Chem. Soc. Pak. 33, 228-232 (2011).
47- A. Shokrollahi, Z. Alizadeh, M. Malekhosseini, Ranjbar, Removal of Bromocresol Green from Aqueous Solution via Adsorption on Ziziphus nummularia as a New, Natural, and Low-Cost Adsorbent: Kinetic and Thermodynamic Study of Removal Process, J. Chem. Eng. Data 56 , 3738–3746 (2011).
48- K.H. Choy, G. McKay, J.F. Porter, Sorption of acid dyes from effluents using activated carbon, Resour. Conserv. Recycl. 27 , 57–71(1999).
_||_