تاثیر اکسیدهای نئودیم و ایتریم بر خواص ساختاری و الکتروشیمیایی کامپوزیت LiFePO4/C سنتز شده به روش حالت جامد بهمنظور کاربرد بهعنوان کاتد باتری لیتیوم یون
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینمحمد علی امیدی فر 1 , بابک هاشمی 2 * , محسن بابایی 3
1 - کارشناسی ارشد، بخش مهندسی مواد، دانشکده مهندسی، دانشگاه شیراز
2 - استاد، بخش مهندسی مواد، دانشکده مهندسی، دانشگاه شیراز
3 - استادیار پژوهشکده مکانیک، پژوهشگاه فضایی ایران
کلید واژه: الکتروشیمیایی, ایتریم, باتری لیتیوم یون, حالت جامد, نئودیم, LiFePO4,
چکیده مقاله :
امروزه باتریهای قابل شارژ مانند باتریهای لیتیوم یون در صنایع مختلف بهکار گرفته شده است. در این باتریها مسأله مهم ایجاد چگالی انرژی و چگالی توان بالا میباشد. از جمله عوامل مؤثر بر این موضوع نوع کاتد بکار رفته در ساخت باتریهای لیتیم یون می باشد. یکی از ترکیبات مورد توجه در سالهای اخیر ماده کاتدی LiFePO4 است. در این پژوهش ماده کاتدی LiFePO4 به روش حالت جامد از مواد اولیه (NH4)H2PO4، FeC2O4.2H2O، Li2CO3 سنتز گردید و به منظور بهبود نفوذ ضعیف یون لیتیوم و افزایش ظرفیت باتری در نرخهای بالای شارژ/ دشارژ عناصر ایتریم و نئودیم به ترکیب اضافه گردید. در این پژوهش از آنالیز TGA-DTA برای بررسی دماهای انجام واکنش تجزیه مواد اولیه و همچنین تعیین دمای سنتز ترکیب، از تصاویر SEM بهمنظور بررسی ریزساختار و مورفولوژی ذرات و از آزمونهای طیفسنجی امپدانس الکتروشیمایی، ولتامتری چرخهای و سیکلهای شارژ/ دشارژ به منظور بررسی رفتار الکتروشیمیایی نمونههای مورد آزمایش استفاده شده است. با توجه به نتایج تحقیق مشخص گردید سنتز دو مرحلهای ترکیب LiFePO4 همراه با درصدهای بهینه اکسیدهای ایتریم و نئودیم بهعنوان دوپنت می تواند هدایت الکتریکی و یونی ماده را بهبود بخشد. از بین نمونههای سنتز شده با درصدهای متفاوت ایتریم و نئودیم نمونه LiFe99.54Y0.4Nd0.06PO4/C با عملکرد الکتروشیمیایی و ریزساختار مناسب و بیشترین ظرفیت نهایی mAh/g 113 بهعنوان نمونه بهینه انتخاب گردید.
Rechargeable batteries such as lithium ion batteries have been used in various industries. In these batteries, the important issue is high energy and power density. One of the important factors affecting this issue is cathode material. LiFePO4/C has been interested as an excellent compounds in recent years. In this study, LiFePO4/C was synthesized by solid state method from raw materials (NH4) H2PO4, FeC2O4.2H2O, Li2CO3 and super pure carbon and in order to improve the weak diffusion of lithium ion and increase the battery capacity at high charge/discharge rates, yttrium and neodymium were added to the LiFePO4/C composite. In this study, TGA-DTA analysis was used to investigate the reaction temperatures of the raw materials and also to determine the synthesis temperature of the compound. SEM images were used to study the microstructure and morphology of the particles and impedance, cycling and cyclic voltammetry tests were used to investigate the electrochemical behavior of the samples. According to the results of this study, it was found that two-step synthesis of the doped samples with yttrium and neodymium ions improves ionic and electrical conductivity of the samples. From the samples synthesized with different percentages of yttrium and neodymium, LiFe99.54Y0.4Nd0.06PO4/C sample with the best electrochemical performance and maximum capacity (113 mAh/g) was selected as the optimal sample.
Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M., & Van Schalkwijk, W. (2011). Nanostructured materials for advanced energy conversion and storage devices. In Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group (pp. 148-159): World Scientific.
Palacin, M. R. J. C. S. R. (2009). Recent advances in rechargeable battery materials: a chemist’s perspective. 38(9), 2565-2575.
Zhang, G. Q., Wu, H. B., Hoster, H. E., Chan-Park, M. B., Lou, X. W. D. J. E., & Science, E. (2012). Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. 5(11), 9453-9456.
Scrosati, B., & Garche, J. J. J. o. p. s. (2010). Lithium batteries: Status, prospects and future. 195(9), 2419-2430
Wakihara, M. J. M. S., & Reports, E. R. (2001). Recent developments in lithium ion batteries. 33(4), 109-134
Fu, L., Liu, H., Li, C., Wu, Y., Rahm, E., Holze, R., & Wu, H. J. P. i. M. S. (2005). Electrode materials for lithium secondary batteries prepared by sol–gel methods. 50(7), 881-928.
Bruce, P. G., Freunberger, S. A., Hardwick, L. J., & Tarascon, J.-M. J. N. m. (2012). Li–O2 and Li–S batteries with high energy storage. 11(1), 19.
Wang, L., Liang, G., Ou, X., Zhi, X., Zhang, J., & Cui, J. (2009). Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction. Journal of Power Sources, 189(1), 423-428.
Delacourt, C., Poizot, P., Levasseur, S., Masquelier, C. J. E., & Letters, S. S. (2006). Size effects on carbon-free LiFePO4 powders: The key to superior energy density. 9(7), A352.
Fey, G. T.-K., Chen, Y. G., & Kao, H.-M. J. J. o. P. S. (2009). Electrochemical properties of LiFePO4 prepared via ball-milling. 189(1), 169-178.
Kang, B., & Ceder, G. J. N. (2009). Battery materials for ultrafast charging and discharging. 458(7235), 190-193.
Chung, S.-Y., Bloking, J. T., & Chiang, Y.-M. (2002).Electronically conductive phospho-olivines as lithium storage electrodes. Nature materials, 1(2), 123-128.
Wen, Y., Zeng, L., Tong, Z., Nong, L., & Wei, W. (2006). Structure and properties of LiFe0V0. 1PO4. Journal of alloys and compounds, 416(1-2), 206-208
Roberts, M. R., Vitins, G., & Owen, J. R. J. J. o. P. S. (2008). High-throughput studies of Li1− xMgx/2FePO4 and LiFe1− yMgyPO4 and the effect of carbon coating. 179(2), 754-762.
Teng, T.-H., Yang, M.-R., Wu, S.-h., & Chiang, Y.-P. J. S. S. C. (2007). Electrochemical properties of LiFe09Mg0. 1PO4/carbon cathode materials prepared by ultrasonic spray pyrolysis. 142(7), 389-392.
Yang, R., Song, X., Zhao, M., Wang, F. J. J. o. A., & Compounds. (2009).Characteristics of Li0.98Cu0.01FePO4 prepared from improved co-precipitation. 468(1-2), 365-369.
Zhang, W.-J. (2011). Structure and performance of LiFePO4 cathode materials: A review. Journal of Power Sources, 196(6), 2962-2970.
Doeff, M. M., Wilcox, J. D., Kostecki, R., & Lau, G. J. J. o. p. s. (2006). Optimization of carbon coatings on LiFePO4. 163(1), 180-184
Kadoma, Y., Kim, J.-M., Abiko, K., Ohtsuki, K., Ui, K., & Kumagai, N. J. E. A. (2010). Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose. 55(3), 1034-1041.
Lin, Y., Gao, M., Zhu, D., Liu, Y., & Pan, H. J. J. o. P. S. (2008). Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C. 184(2), 444-448.
Needham, S., Calka, A., Wang, G., Mosbah, A., & Liu, H. J. E. c. (2006). A new rapid synthesis technique for electrochemically active materials used in energy storage applications. 8(3), 434-438.
Sanchez, M., Brito, G., Fantini, M., Goya, G., & Matos, J. J. S. S. I. (2006). Synthesis and characterization of LiFePO4 prepared by sol–gel technique. 177(5-6), 497-500.
Jugović, D., & Uskoković, D. J. J. o. P. S. (2009). A review of recent developments in the synthesis procedures of lithium iron phosphate powders. 190(2), 538-544.
Wu, B., Ren, Y., & Li, N. (2011). LiFePO4 cathode material. Electric Vehicles-The Benefits and Barriers, 199-216.
Islam, M. S., Driscoll, D. J., Fisher, C. A., & Slater, P. R. J. C. o. M. (2005). Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. 17(20), 5085-5092.
Yanwen, T., Xiaoxue, K., Liying, L., Chaqing, X., & Tao, Q. J. J. o. R. E. (2008). Research on cathode material of Li-ion battery by yttrium doping. 26(2), 279-283.
Zhao, X., Tang, X., Zhang, L., Zhao, M., & Zhai, J. J. E. a. (2010). Effects of neodymium aliovalent substitution on the structure and electrochemical performance of LiFePO4. 55(20), 5899-5904.
Herrera, F., Fuenzalida, F., Marquez, P., & Gautier, J. J. M. C. (2017). Improvement of the electrochemical performance of LiFePO4 cathode by Y-doping. 7(3), 515-522.
Krishnan, S. G., Ab Rahim, M. H., Jose, R. J. J. o. A., & Compounds. (2016). Synthesis and characterization of MnCo2O4 cuboidal microcrystals as a high performance pseudo capacitor electrode. 656, 707-713
_||_