بررسی اثر کلر در مورفولوژی لایه پروسکایت و بازده سلول های خورشیدی پروسکایتی به دو روش پوشش دهی چرخشی یک مرحله ای و پوشش دهی چرخشی-غوطه وری
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینحمانه زارع نژاد 1 , محمد حلالی 2 , مسعود عسکری 3
1 - دانشجوی دکترا، دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف-پردیس بین الملل جزیره کیش
2 - دانشیار، هیات علمی دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف تهران
3 - استادیار ، هیات علمی دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف تهران
کلید واژه: مورفولوژی, بازده, کلر, سلول خورشیدی پروسکایتی, پوشش دهی چرخشی,
چکیده مقاله :
تقاضای انرژی در جهان به دلیل رشد جمعیت، پیشرفت صنعتی و استفاده زیاد از دستگاههای الکتریکی مدرن روز به روز در حال افزایش است. بنابراین، پیداکردن یک منبع انرژی قابل اطمینان، مقرون به صرفه و تجدیدپذیر برای آینده مورد نیاز است. در سال های گذشته، سلول خورشیدی نقش مهمی را در رقابت انرژی جهانی و محیطی به عنوان یک منبع پاک و پایدار داشته است. در میان انواع سلول های خورشیدی، سلولهای خورشیدی پروسکایتی به عنوان سوپراستار صنعت فتوولتائیک در سال های اخیر پدیدار شده اند. در تمام انواع مختلف سلولهای خورشیدی پروسکایتی، مورفولوژی و پوشش دهی لایه پروسکایت نقش مهمی را در کارایی فتوولتائیکی سلول خورشیدی ایفا میکند. با بهبود پوششدهی لایه پروسکایت و دستیابی به لایه پروسکایت متراکم و کاهش میزان حفرات، جریان الکتریکی ناشی از نور خورشید افزایش مییابد و باعث بالارفتن بازده تبدیل توان (PCE) میگردد. در این تحقیق به منظورافزایش بازده به کمک بهبود پوشش دهی لایه پروسکایت، کلر به ساختار متداول پروسکایتی CH3NH3PbI3 به دو روش پوشش دهی چرخشی یک مرحله ای و دو مرحله ای پوشش دهی چرخشی-غوطه وری اضافه شده است. آزمایشات XRD، FE-SEM و اندازهگیری جریان مدار کوتاه و ولتاژ مدار باز با دستگاه شبیهساز سلول خورشیدی به منظور مشخصه یابی، تعیین بازده سلول و مقایسه سلول ها انجام شد.با اضافه شدن کلر، در روش یک مرحله ای بازده تبدیل توان از 3.87% به 6.76% و در روش دو مرحله ای بازده تبدیل توان از 7.84% به 10.27% افزایش یافته است.
Global energy crisis caused by the rapid growth in world population and industrial growth as well as the rapid development of the society and electricity-consuming devices increases day by day and may become a crisis. Among all renewable energies, solar energy is the most promising and easy access to the energy resource to solve the global energy crisis. Perovskite solar cells have been developed as a superior photovoltaic device owing to their high photovoltaic performance and low cost of manufacturing. In all structure of perovskite solar cells, the morphology of perovskite layers plays an important role for photovoltaic performance. The formation of a compact and uniform perovskite layer with large crystal size is a significant factor to get the best device performance and efficiently. In this work, chlorine was used in precursor perovskite solution of common perovskite structure(CH3NH3PbI3) in one step deposition method (OSD) and spin-dip deposition method (SDM) to prepare mesoporous perovskite solar cells to increase cells efficiency by getting compact and smooth perovskite layers. SEM, XRD and current density-voltage (J-V) measurements by solar cell characterization were used to investigate cell performance. As a result, in the presence of chlorine in both OSD and SDM methods power conversion efficiency has been enhanced from 3.87% to 6.76% and from 7.84% to 10.27% respectively.
References:
[1] O. Nematollahi, K.C. Kim, A feasibility study of solar energy in South Korea, Renewable and Sustainable Energy Reviews 77 (2017) 566-579.
[2] S. Rashidi, J.A. Esfahani, A.Rashidi, A review on the applications of porous materials in solar energy systems, Renewable and Sustainable Energy Reviews 73 (2017) 1198-1210.
[3] Y.Luo, F. Meng, E. Zhao, Y.Zheng, Y. Zhou, X. Tao, Fine control of perovskite-layered morphology and composition via sequential deposition crystallization process towards improved perovskite solar cells, Journal of Power Sources 311 (2016) 130-136.
[4] P. Zhou, J. Wu, Y. Tu, M. Zhen, J. Huo, Y. Wei, Z. Lan, Tin oxide nanosheets as efficient electron transporting materials for perovskite solar cells, Solar Energy, 137 (2016) 579584.
[5] S. Zhang, C. Zhang, E. Bi, X. Miao, H. Zeng, L. Han, Organic-inorganic halide perovskite solar cell with CH3NH3PbI2Br as hole conductor, Journal of Power Sources, 339 (2017) 61-67.
[6] M. Shahbazi, H. Wang, Progress in research on the stability of organometal perovskite solar cells, Solar Energy 123 (2016) 7487.
[7] M. Xiao, L. Zhao, S. Wei, Y. Li, B. Dong, Z. Xu, L. Wan, S. Wang, Application of mixed-organic-cation for high performance hole conductor-free perovskite solar cells, Journal of Colloid and Interface Science 510 (2018) 118-126.
[8] N. Marinova, S. Valero, J.L Delgado, Organic and perovskite solar cells: Working principles, materials and interfaces, Journal of Colloid and Interface Science 488 (2017) 373-389.
[9] T. Liu, W. Liu, Y. Zhu, S. Wang, G. Wu, H. Chen, All solution processed perovskite solar cells with Ag@Au nanowires as top electrode, Solar Energy Materials and Solar Cells 171 (2017) 43-49.
[10] Rahul, P.K. Singh, R. Singh, V. Singh, B. Bhattacharya, Z.H. Khan, New class of lead free perovskite material for low-cost solar cell application, Materials Research Bulletin, 97 (2018) 572-577.
[11] C. Sun, Y. Guo, H. Duan, Y. Chen, Y. Guo, H. Li, H. Liu, Solvent assisted growth of organic–inorganic hybrid perovskites with enhanced photovoltaic performances, Solar Energy Materials & Solar Cells 143 (2015) 360-368.
[12] X. Wang, M. Li, B. Zhang, H. Wang, Y. Zhao, B. Wang, Recent progress in organometal halide perovskite photodetectors, Organic Electronics 52 (2018) 172-183.
[13] H. Guo, X. Huang, B. Pu, J. Yang, H. Chen, Y. Zhou, J. Yang, Y. Li, X. Niu, Impact of halide stoichiometry on structure-tuned formation of CH3NH3PbX3−aYa hybrid perovskites, Solar Energy 158 (2017) 367-379.
[14] J. Jianga, H. Taoa , S. Chena, B. Tana, N. Zhouc, L. Zhua, Y. Zhaoa, Y. Wangd, J. Tao, Efficiency enhancement of perovskite solar cells by fabricating as-prepared film before sequential spin-coating procedure, Applied Surface Science 371 (2016) 289-295.
[15] C. Wang, D. Zhao, Y. Yu, N. Shrestha, C.R. Grice, W. Liao, X. Zhao, Y.Yan, Compositional and morphological engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis, Nano Energy 35 (2017) 223-232.
[16] W. Fu, J. Ya, Z. Zhang, T. Ye, Y. Liu, J.W, J. Yao, C. ZhiLi, H. Li, Ho. Chen, Controlled crystallization of CH3NH3PbI3 films for perovskite solar cells by various PbI2(X) complexes, Solar Energy Materials & Solar Cells 155 (2016) 331-340.
[17] F. Han, J. Luo, Z. Wan, X. Liu, C. Jia, Dissolution-Recrystallization Method for High Efficiency Perovskite Solar Cells, Materials Research Bulletin, 97 (2018) 572-577.
[18] X. Xie, G. Liu, L. Chen, S. Li, Z. Liu, Solvent control of the morphology of the hole transport layer for high performance perovskite solar cells, Chemical Physics Letters 687 (2017) 258-263.
[19] M. Becker, M. Wark, Controlling the crystallization and grain size of sequentially deposited planar perovskite films via the permittivity of the conversion solution, Organic Electronics 50 (2017) 87-93.
[20] G. R. Perumallapelli, S. R. Vasa, J. Jang, Improved morphology and enhanced stability via solvent engineering for planar heterojunction perovskite solar cells, Organic Electronics 31 (2016) 142-148.
[21] Z. Xiao, Y. Yuan, Q. Wang, Y. Shao, Y. Bai, Y. Deng, Q. Dong, M. Hu, C. Bi, J. Huang, Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells, Materials Science and Engineering, 101 (2016) 1-38.
[22] I.Grill, K. Handloser, F.C. Hanusch, N. Giesbrecht, Controlling crystal growth by chloride-assisted synthesis: Towards optimized charge transport in hybrid halide perovskites, Solar Energy Materials & Solar Cells 166 (2017) 269-275.
[23] L. Xiao, J. Xu, J. Luan, B. Zhang, Z. Tan, J. Yao, S. Dai, Achieving mixed halide perovskite via halogen exchange during vapor-assisted solution process for efficient and stable perovskite solar cells, Organic Electronics 50 (2017) 33-42.
[24] L. Atourki, E.Vega, B.Marí, M. Mollar, H. A. Ahsaine, MAPbI2.9-xBrxCl0.1 hybrid halide perovskites: Shedding light on the effect of chloride and bromide ions on structural and photoluminescence properties, Applied Surface Science 390 (2016) 744-750.
[25] G.R. Berdiyorov, F.E. Mellouhi, M.E. Madjet, F.H. Alharbi, F.M. Peeters, S. Kais, Effect of halide-mixing on the electronic transport properties of organometallic perovskites, Solar Energy Materials & Solar Cells 148 (2016) 2-10.
[26] C. Huang, N. Fu, F. Liu, L. Jiang , X. Hao, H. Huang, Highly efficient perovskite solar cells with precursor composition-dependent morphology , Solar Energy Materials & Solar Cells 145 (2016) 231-237.
[27] S. Luo, P. You, G. Cai, H. Zhou, F. Yan, W.A. Daoud, The influence of chloride on inter diffusion method for perovskite solar cells, Materials Letters 169 (2016) 236-240.
[28] F. Zheng, H. Takenaka, F. Wang, N. Z. Koocher, A. M. Rappe, First principles calculation of bulk photovoltaic effect in CH3NH3PbI3 and CH3NH3PbI3-xClx,The Journal of Physical Chemistry Letters 6(2014)31-37.
[29] M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature 501 (2013) 395–398.
[30] G. Murugadoss, H. Kanda, S.Tanaka, H.Nishino, S.Ito, H.Imahori, T.Umeyama, An efficient electron transport material of tin oxide for planar structure perovskite solar cells, Journal of Power Sources, 307 (2016) 891-897.
[31] S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P.Ferro, T.Besagni, A. Rizzo, G. Calestani, G. Gigli, F. DeAngelis, R. Mosca, MAPbI3-xClx mixed halide perovskite for hybrid solar cells : the role of chloride as dopant on the transport and structural properties, Chem.Mater 25 (2013) 4613.
[32] E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, D. Cahen, Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells, The Journal of Physical Chemistry Letters 5 (2014) 429-433.
[33] G. Xing ,N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, T. C. Sum, Long range balanced electron and hole transport lengths in organic–inorganic CH3NH3PbI3, Science 342 (2013) 344-347.
_||_