بررسی خواص سایشی آلیاژ آلومینیم 6061 و کامپوزیت حاوی نانولولههای کربنی ساختهشده به روش آلیاژسازی مکانیکی و فرایند پرس داغ
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینمهدی امیدی 1 , سعید ناطق 2 , آرش اعتماد 3 , محمد رضا رستمی 4 , محمد اسماعیل شفیعی 5
1 - استادیار، مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد،واحد نجف آباد، دانشگاه آزاداسلامی، نجف آباد، ایران
2 - استاد، دانشکده مهندسی مواد،واحد علوم و تحقیقات، دانشگاه آزاداسلامی، تهران، ایران
3 - دانشجوی کارشناسی ارشد، مهندسی نانو مواد، دانشگاه اصفهان، اصفهان، ایران
4 - دانشجوی کارشناسی ارشد، مهندسی نانو مواد،دانشگاه علم و صنعت، تهران، ایران
5 - کارشناسی، مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد،واحد نجف آباد، دانشگاه آزاداسلامی، نجف آباد، ایران
کلید واژه: کامپوزیت, سایش, آلیاژ آلومینیم 6061, نانولولههای کربنی, پرس داغ,
چکیده مقاله :
در این پژوهش آلیاژ آلومینیم نانوساختار و کامپوزیتهای پایه آلومینیمی حاوی مقادیر مختلف نانولولههای کربنی ( wt.%5/1-5/0) به روش ترکیبی آلیاژسازی مکانیکی و پرس داغ تولید گردید. آزمایشها نشان داد که افزودن نانولوله کربنی تا 1 درصد وزنی به میزان جزئی دانسیته نسبی کامپوزیت آلومینیم – نانولوله کربنی را افزایش میدهد. این در حالی است که مقادیر سختی کامپوزیت فوق با افزایش نانولولههای کربنی به دلیل قرارگیری نانولولههای کربنی در فضای خالی بین ذرات پودر و پر شدن میکرو حفرات بهطور قابلملاحظهای افزایشیافته است. مقدار سختی از HV 3/93 مربوط به آلومینیم درشت دانه به HV 18/219 رسید. مقادیر بیشتر نانولولههای کربنی موجب کاهش سختی و دانسیته نسبی کامپوزیت تولیدی گردید. رفتار سایشی کامپوزیتهای آلومینیومی حاوی نانولولههای کربنی به روش پین روی دیسک موردبررسی قرار گرفت. نتایج نشان داد که اضافه کردن نانولولههای کربنی تا میزان 1 درصد وزنی به کامپوزیت موجب کاهش ضریب اصطکاک و کاهش وزن گردیده است. مقدار ضریب اصطکاک آلومینیم درشت دانه در محدوده (91/0-33/0) و برای نمونه حاوی 1 درصد وزنی، ضریب اصطکاک حالت پایدار در محدوده (45/0-42/0) تغییر کرد. همچنین کاهش وزن نیز از 1/44 به 4/7 میلیگرم رسید. این در حالی است که افزایش مقادیر بیش از آن به دلیل ایجاد پدیده تودهای شدن موجب افزایش ضریب اصطکاک و کاهش وزن کامپوزیت آلومینیمی میگردد. نتایج آزمونهای سایش برای آلومینیوم درشتدانه، نانوساختار و کامپوزیت آلومینیم حاوی 1 درصد وزنی نانولوله کربنی نشان داد که مکانیزم سایش به ترتیب چسبان، ورقه ورقه شدن و خراشان است.
In this study, nanostructured aluminum alloy and aluminum base composites containing different amounts of carbon nanotubes (0.5-1.5wt.%) were produced by a combination of mechanical alloying and hot press. Experimental results have shown that the addition of carbon nanotubes up to 1wt. % slightly increase the relative density of aluminum-carbon nanotube composites. However, the hardness of composite increased significantly with increasing carbon nanotubes, Because of the placement of carbon nanotubes in the free space between the powder particles and the filling of the micro-cavities. The hardness value from 93.3 HV to the coarse-grained aluminum reached 219.18 HV. The higher amounts of carbon nanotubes reduced the composite hardness and relative density. The wear behavior of aluminum composites containing carbon nanotubes was investigated by pin on disk method. The results showed that the addition of carbon nanotubes up to 1wt. % into the composite reduced the friction coefficientand weight loss. The amount of friction coefficient of the coarse-grained aluminum in the range (0.33-0.91) and for the specimen containing 1 wt%, the steady state friction coefficient changed in the range (0.42-0.45). Meanwhile, increasing the amount of it, due to the agglomerate phenomenon, increases the friction coefficientand weight loss of the aluminum composite. The results of wear tests for coarse-grained, nanostructured and aluminum composite containing 1 wt.% carbon nanotubes showed that the wear mechanism was adhesive, delamination and abrasive, respectively.
References:
1- C.F. Deng,D.Z. Wang,Zhang,X.X.&A.B. Li,Processing and properties of carbon nanoyubes reinforced aluminum composite,Mater.Sci.Eng.A,Vol.444,pp.138-145,2007.
2- G.W. Stachowiak& A.W. Batchelor, “Experimental Methods in Tribology”, Elsevier Science Ltd, USA, 2004.
3- H.J.Choi,S.M. Lee&D.H. Bae, “Wear characteristic of aluminum based composites containing multi walled carbon nanotubes”,Wear,Vol.270,pp.12-18,2010.
4- M.M.H.Bastwros, M.K. Esawi&A. Wifi, “Friction and wear behavior of Al-CNT composites”, Wear,Vol.307,pp.164-173, 2013.
5- I.Y. Kim, J.H. Lee, G.S. Lee, S.H.Baik, Y.J. Kim&Y.Z. Lee, “Friction and wear characteristics of the carbon nanotube–aluminum composites with different manufacturing conditions”, Wear,Vol.267,pp.593–598, 2009.
6- A.M. Al-Qutub, A.Khalil, N. Saheb&A.S.Hakeem,“Wear and Friction Behavior of Al6061 Alloy Reinforced With Carbon Nanotubes”,Wear,Vol.297,pp.752-761,2013.
7- M. Jafari,M.H. Abbasi&M.H. Enayati, F.Karimzadeh, “ Mechanical properties of nanostructured Al2024–MWCNT composite prepared by optimized mechanical milling and hot pressing methods”, Advanced Powder Technology,Vol.23,pp.205 –210,2012.
.
8- Shewman.P.G.,Transformations in Metals,McGraw-Hill,New York,1969.
64 بررسی خواص سایشی آلیاژ آلومینیوم 6061 و کامپوزیت حاوی نانولولههای کربنی تولیدشده به روش آلیاژساز...
9- R. Christopher, Bradbury,Jaana-KateriinaGomon,L.Kollo,H.Kwon&M.Leparoux, “Hardness of Multi Wall Carbon Nanotubes reinforced aluminium matrix composites”Journal of Alloys and Compounds,Vol.585,pp.362-367,2014.
10- T.Z. Mohamed Hassan&M.K. AmalEsawiSayedMetwalli,“Effect of carbon nanotube damage on the mechanical properties of aluminium–carbon nanotube composites”, Journal of Alloys and Compounds,Vol. 607 ,pp.215–222, 2014.
11- R. Perez-Bustamante, F. Perez-Bustamante, I. Estrada-Guel, L.Licea-Jimenez, M. Miki-Yoshida&R. Martínez-Sanchez, “Effect of milling time and CNT concentration on hardness of CNT/Al2024 composites produced by mechanical alloying”, Materials C haracterization,Vol.7 5,pp. 1 3 – 1 9,2 0 1 3.
12- K.M. Shorowordi, A.S.M.A Haseeb&J.P.Celis, “Velocity effects on the wear, friction and tribochemistry of aluminum MMC sliding against phenolic brake pad”, Wear,Vol. 256 ,pp.1176–1181,2004.
13- M. Jafari, M.H. Enayati, M.H.Abbasi&F. Karimzadeh,“Compressive and wear behaviors of bulk nanostructured Al2024 alloy”, Materials and Design,Vol.31,pp. 663–669,2010.
14- Y.Y.Chang.,D.Y. Wavg,C.H.Chang & W.T.Wu,Tribological analysis of nano-composite diamond-like carbon films deposite by unbalanced magnetron sputtering,Surf.Coat.Technol.,Vol.184,pp.349-355,2004.
15- U.Abdullahi, M.A. Maleque&U.Nirmal, “Wear mechanism map of CNT-Al nano-composite”, Procedia Engineering, Vol. 68, pp.736–742,2013.
16- K. Lu&J.Lu,Surfacenanocrystallization (SNC) of metallic materials Presentation of the concept behind a new approach,J.Mater.Sci.Technol,Vol.15,pp.193-197,1999.
17- D. Lahiri,V. Singh,V.,A.K. Keshri, S. Seal&A. Agarwal, “Carbonnanotube toughened hydroxyapatite by spark plasma sintering:microstructuralevolutionandmultiscaletribological properties”,Carbon,Vol.48,pp.3103–3120, 2010.
18- S.M.Zhou, X.B. Zhang,X.B., Z.P. Ding, C.Y. Min,G.L. Xu& W.M. Zhu, “Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique”,Composites A,Vol.38,pp.304-306,2007.
19- A.R. Abdollahi, A. Alizadeh&H.R. Baharvandi, “Dry sliding tribological behavior and mechanical properties of Al2024–5 wt.%B4C nanocomposite produced by mechanical milling and hot extrusion”, Materials and Design, Vol. 55, pp.471–481,2014.
20- S. Kumar,M. Chakraborty,V.S.Sarma & B.S.Murty, “Tensile and wear behavior of in situ Al-7Si/TiB2 particulate composites”, Wear ,vol.265,pp.134-142,2008.
21- F. Akhlaghi&A.Zare-Bidaki, “ Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024–graphite composites produced by in situ powder metallurgy method”, Wear,Vol. 266 ,pp.37–45, 2009.
22- G.E. Dieter,MechanicalMetallurgy,4th Ed.,McGraw-Hill,1988.
23- N.Hosseini ,F.Karimzadeh, M.H. Abbasi&M.H. Enayati “A comparative study on the wear properties of coarse-grained Al6061 alloy andnanostructured Al6061–Al2O3 composites”, Tribology International,Vol. 54 ,pp.58–67, 2012.
65 مجله مواد نوین/ جلد 9/شماره 1/ پاییز 1397
24- A.M.Al-Qutub, I.M.Allam & T.W.Qureshi, “Effect of sub-micron Al2O3 concentration on dry wear properties of 6061 aluminum based composite”, Journal of Materials Processing Technology,Vol.172, pp. 327–331, 2006.
25- M.H.Cho,J.Ju,S.J. Kim& H. Jang, “Tribological properties of solid lubricants (graphite,Sb2S3,MoS2) for automotive brake friction materials,Wear,Vol.260,pp.855-860,2006.
26- S.R. Dong, J.P. Tu&X.B. Zhang,“An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes”,Materials Science and Engineering A:Structural Materials,Vol.313,pp.83–87,2001.
27- R. PerezBustamante,J.L. BuenoEscobedo,J. Jimenez-Lobato, I. Estrada-Guel,M. Miki-Yoshida,L. Licea-Jiménez&R. MartínezSanchez,“Wear behavior in Al 2024–CNTs composites synthesized by mechanical alloying”,Wear,Vol.292–293,pp.169–175, 2012.
28- K.T. Kim,S. Cha&S.H. Hong,Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites,Mater.Sci.Eng.A,Vol.449-451,pp.46-50,2007.
29- C.B. Lin, Z.C.Chang, Y.H. Tung&Y.Y.Ko, “Manufacturing and tribological properties of copper matrix/carbonnanotubes composites”,Wear,Vol.270,pp.382–394, 2011
30 - امینی. میلاد.، ثابت. حامد. ، کاربخش راوری.
بنفشه.، 1397 ، "بررسی تاثیر مقادیر ذرات B4C بر سختی و
مقاومت به سایش کامپوزیت Al-SiC-B4C ایجاد شده به
روش GTAW بر آلیاژ AA332 ، مجله مواد نوین، دوره 8 ،
شماره 31 ، 123 - 140 .