سنتز میکروکرههای کامپوزیتی Cr2O3/C با تغییر در پارامترهای ساخت و بررسی خواص الکتروشیمیایی آنها
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینامیرحسین اسراری 1 , بهروز شایق بروجنی 2 , حمید صفرزاده 3
1 - مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
2 - استادیار، دانشکده فنی و مهندسی دانشگاه شهرکرد، شهرکرد، ایران
3 - مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
کلید واژه: Cr2O3, کربن, الکتروشیمیایی, سولوترمال, میکروکره,
چکیده مقاله :
در این پژوهش میکروکرههای Cr2O3/C با استفاده از روش سولوترمال به صورت یک مرحلهای برای اولین بار تهیه شد. از آنالیز پراش پرتو ایکس (XRD) و میکروسکوپ الکترونی روبشی SEM)) جهت مشخصه یابی محصولات سنتز شده مورد استفاده قرار گرفت. تعیین مقدار کربن در کامپوزیت با استفاده از آنالیز حرارتی (TGA) انجام شد. نتایج نشان میدهد، کربن در کامپوزیت به صورت آمورف است و تنها پیک پراش Cr2O3را در الگوی XRD میتوان مشاهده نمود. اندازه بلورکهای Cr2O3با استفاده از روش ویلیامسون-هال برابر 36 نانومتر محاسبه شد. محتوای کربن درکامپوزیت برابر 63 درصد وزنی محاسبه گردید. تصاویر حاصل از SEM نشان میدهد که سطح کرههای تولید شده نسبتا صاف و میانگین قطر آنها در حدود 2 میکرون میباشد. اندازه و مورفولوژی کرههای کربنی میتواند با تغییر در شرایط واکنش سولوترمال کنترل شود و در محدوده 7/0 تا 5/3 میکرون تغییر کند. نتایج حاصل از آزمون امپدانس الکتروشیمیایی در محلول KOH برای میکروکرههای Cr2O3/C دلالت بر رفتار خوب خازنی این ماده دارد. بهبود خواص الکتروشیمیایی Cr2O3/C نسبت به نانوذرات Cr2O3، به وجود کربن در کامپوزیت نسبت داده شد.
Nanostructured transition metal oxides have received Special role in the production of the anode electrode in the lithium-ion batteries. In this research, a one stage method to synthesize Cr2O3/Chybrid microspheres via solvothermal method was reported. The XRD and SEM methods were used for characterization of products. The Carbon content of synthesized samples were measured by TGA method. The results showed that only Cr2O3 peaks could be observed XRD patterns, and this indicated that the carbon in the composite was amorphous. The average crystallite size is calculated by using Williamson-Hall, 36 nm. The content of carbon in the composite was 63 wt%. The SEM images showed that the surfaces of prepared spheres were relatively smooth and Carbon microspheres had an average diameter of about 2 μm. The morphologies and sizes of the microspheres change with controlled by reaction conditions Solvothermaland in the size range of 0.7-3/5 microns changes. Electrochemical impedance in KOH solution for Cr2O3/C indicates a good behavior Capacitive to materials. Cr2O3. Improve the electrochemical properties of the composite can be attributed to amorphous carbon.
1- P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, "Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries", Nature, Vol. 407, Pp. 496-499, 2000.
2- K. Anandan, V.Rajendran, "Morphological and size effects of NiO nanoparticles via solvothermal process and their optical properties", Materials Science in Semiconductor Processing,Vol. 14, Pp. 43-47.
3- H. Qiao, Q. Luo, J. Fu, J. Li, D. Kumar, "Solvothermal Preparation and Lithium Storage Properties of Fe2O3/C Hybrid Microspheres", Journal of Alloys and Compounds, Vol. 513, Pp. 220–223, 2012.
4- X.H. Huang, C.B. Wang, S.Y. Zhang, F. Zhou, "CuO/C microspheres as anode materials for lithium ion batteries",Electrochimica Acta, Vol. 56, Pp. 6752-6756, 2011.
5- B. T. Hang, D. H. Thang,"Effect of additives on the electrochemical properties
of Fe2O3/Cnanocomposite for Fe/air battery anode", Electroanalytical Chemistry, Vol. 762, Pp. 59-65, 2016.
6- H. Qiao, D. Yao, Y. Cai, F. Huang, Q. Wei, "One-Pot Synthesis and Electrochemical Property of MnO/C Hybrid Microspheres", Journal of Ionics, Vol. 19, Pp. 995-600, 2013.
7- X. Chai, C. Shi, E. Liu, J. Li, N. Zhao, C. He,"Carbon-coated Fe2O3 nanocrystals with enhanced lithium storagecapability", Applied Surface Science,Vol. 347, Pp. 178-185, 2015.
8- H. Li, M. Yu, F. Wang, P. Liu, Y. Liang, J. Xiao, C. Wang, Y. Tong, G. Yang, "Amorphous Nickel Hydroxide Nanospheres with Ultrahigh Capacitance and Energy Density as Electrochemical Pseudocapacitor Materials", Chemistry, Vol. 47, Pp. 6537-6539, 2008.
9- L. He, J. Li, Z. Feng, D. Sun, "Solvothermal synthesis and characterization of ceria with solid andhollow spherical and multilayered morphologies",Applied Surface Science,Vol. 322, Pp. 147-154, 2014.
10- J. Yu, L. Zhu, C. Fan, C. Zan, “Highly dispersed Mn2O3 microspheres: Facile solvothermal synthesis and their application as Li-ion battery anodes”, Particuology, Vol. 22, Pp. 89-94, 2015.
11- P. Peng, Z. Wen, Y. Liu, Y. Lu, M. Wu, “Synthesis and performance of apple-like tin oxide as anode for Li-ion batteries”, Solid State Ionics, Vol. 262, Pp. 61-65, 2014.
12- J. Zhang, Y. Yao, T. Huang, A. Yu, “Uniform hollow Fe3O4 spheres prepared by template-free solvothermal method as anode material for lithium-ion batteries", Electrochimica Acta, Vol. 78, Pp. 502-507, 2012.
13- H. Qiao, N. Wu, F. Huang, Y. Cai, Q. Wei, "Solvothermal synthesis of NiO/C hybrid microspheres as Li-intercalation electrode material", Materials Letters, Vol. 64, Pp. 1022–1024, 2010.
14- K. Wang, M. Zheng, X. Shi, Z. Lin, H. Wang, Y. Lu, “Glucose–ethanol-assisted synthesis of amorphous CoO@C core–shell composites for electrochemical capacitors electrode”, Chemical Engineering, Vol. 266, Pp. 141-147, 2015.
15- S. Jiang, R. Wang, M. Pang, H. Wang, S. Zeng, “Assembling porous carbon-coated TiO2(B)/anatase nanosheets on reduced graphene oxide for high performance lithium-ion batteries”, Electrochimica Acta, Vol. 182, Pp. 406-415, 2015.
16- Y. Deng, C. Fang, G. Chen, “The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review”, Power Sources, Vol. 304, Pp. 81-101, 2016.
17- X. Zhao, Q. Zhuang, S. Xu, Y. Xu, Y. Shi, X. Zhang, “Investigation of Cr2O3 as Anode Materials for Lithium-Ion Batteries by Electrochemical Impedance Spectroscopy”, Electrochemical Society, Vol. 162, Pp. 1156-1162, 2015.
18- L. Jiang, S. Xin, X. Wu, H. Li, Y. Guo. L. Wan, “Non-sacrificial template synthesis of Cr2O3–C hierarchical core/shell nanospheres and their application as anode materials in lithium-ion batteries”, Royal Society of Chemistry, Vol. 20, Pp. 7565-7569, 2010.
19- S. Ullah, I. Ali Khan, M. Choucair, "A Novel Cr2O3-Carbon Composite as a High Performance Pseudo-Capacitor Electrode Material", Journal of Electrochimica Acta, Vol. 171, Pp. 142–149, 2015.
20- H. Qiao, L. Xiao, Z. Zheng, H. Liuc, F. Jia, L. Zhang, "One-Pot Synthesis of Coo/C Hybrid Microspheres as Anode Materials for Lithium-Ion Batteries", Journal of Power Sources, Vol. 185, Pp. 486–491, 2008.
21- H. Du, L. Jiao, Q. Wang, L. Guo, Y. Wang, H. Yuan, "Facile Carbonaceous Microspheres Templated Synthesis of Co3O4 Hollow Spheres and Their Electrochemical Performances in Supercapacitors", Journal of Nano Res, Vol. 6, Pp. 87-98, 2013.
22- M. Li, Y. Wang, C. Liu, H. Gao, W. DongIron, "Iron oxide/carbon microsphere lithium-ion battery electrode with high capacity and good cycling stability", Electrochimica Acta, Vol. 67, pp. 187– 193, 2007.
23- Q. Zhang, Z. Shi, Y. Deng, J. Zheng, G. Liua, G. Chen, "Hollow Fe3O4/C Spheres as Superior Lithium Storage Materials", Journal of Power Sources, Vol. 197, Pp. 305– 309, 2013.
24- م. خسروی، ب. لطفی، م. عرفانمنش، م. رمضانی، "اعمال و مشخصهیابی پوششهای نانوساختار اکسید کروم پاشش حرارتی شده"، مجله مواد نوین، جلد پنجم، شماره 20، ص 165-174، تابستان 1394. |
25- X. H. Huang, J.P. Tu, C.Q. Zhang, J.Y. Xiang, “Net-structured NiO–C nanocomposite as Li-intercalation electrode material”, Electrochemistry Communications, Vol. 9, Pp. 1180-1184, 2007.
26- H. Li, L. Ma, W. Chen, J. Wang, “Synthesis of MoS2/C nanocomposites by hydrothermal route used as Li-ion intercalation electrode materials”, Materials Letters, Vol. 63, pp. 1363–1365, 2009.
27- J. Zheng, Z.Q Liu, X. S. Zhao, M. Lio, "One Step Solvothermal Synthesis of Fe3O4/C Core Shell Nanoparticles with Tunable Size", nanotechnology, Vol. 23, Pp. 165601-165609, 2012.
28- H. Safarzadeh, R. Ebrahimi-Kahrizsangi, M. Ghaderi, A. Saffar-Talouri, “Investigation of solvothermal synthesis and formation mechanism of Fe2O3/C microspheres”, Surface Engineering and Applied Electrochemistry, Vol. 51, Pp. 313-317, 2015.
29- L. Wang, Y. Zhao, Q. Lai, Y. Hao, "Preparation of 3D Rose-Like Nio Complex Structure and Its Electrochemical Property", Journal of Alloys and Compounds, Vol. 495, Pp. 82–87, 2010.
30- Q. Wang, H. Li, L. Chen, X. Huang, "Novel Spherical Microporous Carbon as Anode Material for Li-Ion Batteries", Solid State Ionics, Vols. 152–153, Pp. 43– 50, 2002.
31- H. Du, L. Jiao, Q. Wang, L. Guo, Y. Wang, H. Yuan, "Facile Carbonaceous Microspheres Templated Synthesis of Co3O4 Hollow Spheres and Their Electrochemical Performances in Supercapacitors", Nano Research, Vol. 6, Pp. 87-98, 2013.
32-Y. Chen, X. Shi, B. Han, H. Qin, Z. Li, Y. Lu, "The Complete Control for the Nanosize of Spherical MCM-41", Nanoscience and Nanotechnology, Vol. 12, Pp. 1–11, 2012.
33- Chunming Niu, Enid K. Sichel, Robert Hoch, David Moy, "High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes", American Institute of Physics, Vol. 70, Pp. 1480-1482, 1997.
34-X. Zhao, Q. Zhuang, S. Xu, Y. Xu, Y. Shi, X. Zhangb, "Investigation of Cr2O3 as Anode Materials for Lithium-Ion Batteries by Electrochemical Impedance Spectroscopy", Journal of The Electrochemical Society, Vol. 162, Pp. 1156-1162, 2015.
35- H. Liu, D. Wexler, G. Wang, "One-Pot Facile Synthesis of Iron Oxide Nanowires as High Capacity Anode Materials for Lithium Ion Batteries", Journal of Alloys and Compounds, Vol. 487, Pp. 24–27, 2009.
_||_