رشد و بررسی خواص مغناطیسی و نوری نانوساختارهای هسته-پوسته مگنتیت@اکسیدمس
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینمریم ناصری پور 1 , آزاده اعظمی 2 , احمد حسن پور 3
1 - گروه فیزیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
2 - گروه فیزیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
3 - گروه فیزیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
کلید واژه: مگنتیت, نانوساختارهای هسته-پوسته, اکسیدمس, تخریب فوتوکاتالیستی, خواص مغناطیسی و نوری,
چکیده مقاله :
نانوساختارهای هسته-پوسته مگنتیت-اکسیدمس جهت کاربرد در فرایند تخریب فوتوکاتالیستی رنگدانه های شیمیایی با استفاده از روش های ساده شیمیایی رشد داده شدند. خواص ساختاری، مغناطیسی و نوری محصولات بدست آمده بترتیب با استفاده از مشخصه یابی های الگوی پراش، میکروسکوپ های الکترونی روبشی و عبوری، حلقه پسماند، طیف جذبی و نورتابناکی مورد مطالعه و بررسی قرار گرفت. الگوهای پراش تشکیل فازهای چندبلوری مگنتیت (مکعبی) و اکسیدمس (مونوکلینیک) را تایید کرده و تصاویر میکروسکوپ الکترونی تشکیل ساختارهایی در ابعاد نانو را با ریخت های کره و تسمه (کمربند) نشان نشان دادند. مطالعات مغناطیسی که توسط آنالیز حلقه پسماند صورت گرفت نشان دهنده کاهش خاصت مغناطیسی نانوساختارهای هسته-پوسته می باشد که علت آن را می توان ضعیف بودن خاصیت مغناطیسی اکسیدمس دانست. بررسی خواص نوری نانوساختارهای هسته-پوسته نیز حاکی از وجود لبه جذب آنها در ناحیه مرئی می باشد، که آنها را برای جذب نور خورشید و شرکت در فعالیت تخریب فوتوکاتالیستی مناسب می سازد. نمودار تائوک که جهت تخمین انرژی شکاف باند نوری آنها رسم شده بود نشان داد که ساختارهای هسته-پوسته دارای انرژی شکاف باند نوری بزرگتری نسبت به ساختارهای پوسته می باشند. طیف نورتابناکی نانوساختارهای هسته-پوسته نیز گسیل های نوری در نواحی مرئی و فرابنفش از طیف امواج الکترومغناطیسی را نشان می دهد.
In this study, Fe3O4@CuO core-shell nanostructures were synthesized through simple chemical methods for using in degradation process of chemical dyes application. Structural, morphological, magnetic, and optical properties of the obtained product were studied by X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), hysteresis loop, absorbance (UV-Vis), and photoluminescence (PL) spectra. The XRD patterns revealed the formation of multi-crystalline Fe3O4 (Cubic) and CuO (Monoclinic) phases. Electron microscopy images also show formation of structures in nano-dimension with spherical- and belt-like morphologies. Magnetic studies that carried out by hysteresis loop show decreases in magnetic properties of core-shell nanostructures which can be due to weak magnetic properties of CuO. Investigating optical properties of core-shell nanostructures demonstrated the existence of absorbance edge at a visible region that is proper for solar ray absorbance and participates in photocatalytic degradation activity. Tauc plot also show decreasing in optical energy band gap of core-shell compare to the shell nanostructures.
References:
[1] J. Ding, L. Liu, J. Xue, Z. Zhou, G. He, H. Chen, Low-temperature preparation of magnetically separable Fe3O4@CuO-RGO core-shell heterojunctions for high-performance removal of organic dye under visible light, Journal of Alloys and Compounds 688 (2016) 649-656.
[2] Q. Tian, J. Hu, Y. Zhu, R. Zou, Z. Chen, S. Yang, R. Li, Q. Su, Y. Han, X. Liu, Sub-10 nm Fe3O4@ Cu2–xS Core–Shell Nanoparticles for Dual-Modal Imaging and Photothermal Therapy, Journal of the American Chemical Society 135 (2013) 8571-8577.
[3] M. Martín, P. Salazar, R. Villalonga, S. Campuzano, J.M. Pingarrón, J.L. González-Mora, Preparation of core–shell Fe3O4@poly (dopamine) magnetic nanoparticles for biosensor construction, Journal of Materials Chemistry B 2 (2014) 739-746.
[4] T. Gulin-Sarfraz, J. Zhang, D. Desai, J. Teuho, J. Sarfraz, H. Jiang, C. Zhang, C. Sahlgren, M. Lindén, H. Gu, Combination of magnetic field and surface functionalization for reaching synergistic effects in cellular labeling by magnetic core–shell nanospheres, Biomaterials Science 2 (2014) 1750-1760.
[5] W.E.I. Zhang, M. Saliba, S.D. Stranks, Y. Sun, X. Shi, U. Wiesner, H.J. Snaith, Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles, Nano letters 13 (2013) 4505-4510.
[6] J. Croissant, D. Salles, M. Maynadier, O. Mongin, V. Hugues, M. Blanchard-Desce, X. Cattoën, M. Wong Chi Man, A. Gallud, M. Garcia, Mixed Periodic Mesoporous Organosilica Nanoparticles and Core–Shell Systems, Application to in Vitro Two-Photon Imaging, Therapy, and Drug Delivery, Chemistry of Materials 26 (2014) 7214-7220.
[7] Y.-F. Zhang, L.-G. Qiu, Y.-P. Yuan, Y.-J. Zhu, X. Jiang, J.-D. Xiao, Magnetic Fe3O4@ C/Cu and Fe3O4@CuO core–shell composites constructed from MOF-based materials and their photocatalytic properties under visible light, Applied Catalysis B: Environmental 144 (2014) 863-869.
[8] R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, S. Khosravi-Gandomani, A. Sáaedi, N.M. Huang, W.J. Basirun, M. Azarang, Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles, Materials Science in Semiconductor Processing 32 (2015) 152-159.
[9] R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, L. Zaman, Synthesis and characterization of Pb-doped ZnO nanoparticles and their photocatalytic applications, Materials Research Innovations 20 (2016) 121-127.
[10] M. Nasseri, A. Aezami, A. Hassanpour, 1th national conference on applied research in science and engineering, Mashahd, Iran, 2017.
[11] P.D.F. ICDD, International Centre for Diffraction Data, Powder Diffraction File, Newtown Square, Pennsylvania, USA (1997).
]12[ ر. معمارزاده, س. جوادپور, ف. پناهی, بهینه سازی عوامل موثر بر اندازه نانو ذرات اکسید قلع به روش تاگوچی, فصلنامه علمی - پژوهشی مواد نوین 3 (2012) 11-20.
[13] H. Kafashan, F. Jamali-Sheini, M. Azizieh, Z. Balak, M. Cheraghizade, H.N. Vatan, Electrochemical deposition of nanostructured SnS1−xTex thin films and their surface characterization, Journal of Alloys and Compounds 694 (2017) 1338-1347.
[14] M. Yamaguchi, M. Tachikawa, M. Sugo, S. Kondo, Y. Itoh, Analysis for dislocation density reduction in selective area grown GaAs films on Si substrates, Applied Physics Letters 56 (1990) 27-29.
[15] R.J. Arsenault, N. Shi, Dislocation generation due to differences between the coefficients of thermal expansion, Materials Science and Engineering 81 (1986) 175-187.
[16] J. Chen, S.Z. Deng, N.S. Xu, W. Zhang, X. Wen, S. Yang, Temperature dependence of field emission from cupric oxide nanobelt films, Applied Physics Letters 83 (2003) 746-748.
[17] J. Chen, N.Y. Huang, S.Z. Deng, J.C. She, N.S. Xu, W. Zhang, X. Wen, S. Yang, Effects of light illumination on field emission from CuO nanobelt arrays, Applied Physics Letters 86 (2005) 151107.
[18] S. Hyun, T. Ko, K. Han, J.H. Oh, A wet-chemical preparation of a Fe3O4-CuO composite powder in core-shell structure, physica status solidi (c) 1 (2004) 3468-3471.
[19] F. Jamali-Sheini, R. Yousefi, N. Ali Bakr, M. Cheraghizade, M. Sookhakian, N.M. Huang, Highly efficient photo-degradation of methyl blue and band gap shift of SnS nanoparticles under different sonication frequencies, Materials Science in Semiconductor Processing 32 (2015) 172-178.
[20] S. Humaira, K.C. Kemp, C. Vimlesh, S.K. Kwang, Graphene–SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight, Nanotechnology 23 (2012) 355705.
[21] X. Zhao, P. Wang, Z. Yan, N. Ren, Room temperature photoluminescence properties of CuO nanowire arrays, Optical Materials 42 (2015) 544-547.
[22] K. Borgohain, N. Murase, S. Mahamuni, Synthesis and properties of Cu 2 O quantum particles, Journal of applied physics 92 (2002) 1292-1297.
[23] H.-J. Jeon, M.-K. Jeon, M. Kang, S.-G. Lee, Y.-L. Lee, Y.-K. Hong, B.-H. Choi, Synthesis and characterization of antimony-doped tin oxide (ATO) with nanometer-sized particles and their conductivities, Materials Letters 59 (2005) 1801-1810.
_||_