تولید زیستی نانوپودر نقره و ارزیابی کاربردهای آن در تولید فراورده های بهداشتی
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینسعید جعفری راد 1 , لاله خدایی 2 , جلال محمدی 3 , رزاق محمودی 4 , آیدا پارسا آذر 5
1 - استادیار، مرکز تحقیقات علوم پایه، دانشگاه تبریز
2 - استادیار گروه داروسازی سنتی، دانشکده طب سنتی، دانشگاه علوم پزشکی تبریز
3 - دانشجوی دکترا، گروه شیمی تجزیه، دانشکده شیمی، دانشگاه تبریز
4 - دانشیار گروه بهداشت و ایمنی مواد غذایی، دانشکده بهداشت، دانشگاه علوم پزشکی قزوین
5 - دانشجو کارشناسی ارشد، مرکز تحقیقات علوم پایه، دانشگاه تبریز
کلید واژه: نانوذرات نقره, میوه نسترن وحشی, نانوکرم,
چکیده مقاله :
به دلیل کاربردهای بیولوژیکی و دارویی مختلف شناسایی شده برای نانوذرات نقره، سنتز نانوذرات نقره در سالهای اخیر بسیار مورد توجه قرار گرفته است. روش فیتوسنتز، روشی با صرفه، دقیق و بیخطر برای محیط زیست است. در روشهای شیمیایی همواره این احتمال وجود دارد که مقادیر جزیی از مواد حلال بر روی نانوذرات نقره باقی بماند. در این کار پژوهشی همه واکنشگرهای شیمیایی از گرید تجزیهای هستند و بدون خالص سازی اضافی بهکار گرفته شدهاند. یک مسیر فیتوسنتزی با روش حرارتی کلاسیک با استفاده از گیاه نسترن وحشی برای تولید نانوذرات نقره استفاده شد. جهت بررسی فعالیت آنتی اکسیدانی عصاره مورد استفاده از آزمون 2،2-دی فنیل- پیکریل هیدرازین (DPPH) استفاده گردید. برای بررسی اندازه، ریختشناسی و ترکیبات شیمیایی پایدارکنندهی نانوذرات نقره، رسوب بهدست آمده توسط فنهای طیفسنجی زیر قرمز تبدیل فوریه(FTIR)، طیفسنجی پراش اشعه ایکس(XRD)، طیفسنج انرژی انتشاری اشعه ایکس (EDX)، پراکندگی دینامیک نور(DLS ) و میکروسکوپ الکترونی روبشی (SEM) مورد آنالیز قرار گرفت. نانوذرات نقره برای بررسی خلوص فازها، میزان بلورینگی و میانگین اندازه بلور ذرات بهوسیله XRD شناسایی شدند. آنالیز عنصری نمونههای سنتز شده برای بهدست آوردن اطلاعات ساختاری بهوسیله روش SEM-EDX آنالیز شدند. با استفاده از طیف FT-IR می توان گفت گروه OH مسئول احیای و پوشاندن یون نقره میباشد که در نتیجه این کاهش، گروه کربونیل تقویت شده است. نتایج آنالیز SEM اندازه ذرات را بین 40-30 نانومتر نشان میدهد. خاصیت آنتی باکتریایی ذرات سنتز شده در برابر چهار باکتری استافیلوکوکوس اورئوس، لیستریا مونوسیتوژن، اشرشیا کولی و سالمونلا تیفیموریوم بررسی شد. نهایتا کرمی از عصاره نسترن وحشی و نانوذرات نقره سنتزشده از آن به روش سبز تهیه گردید. نتایج گویای آن است که تولید نانوذرات نقره به روش بیوسنتز گیاهی میتواند به عنوان روش دوستدار محیط زیست و ارزان برای تولید محصولات آرایشی-بهداشتی طبیعی مانند کرم به کار رود.
The use of plant extract in the phytosynthesis of nanoparticles can be an eco-friendly approach and have been suggested as possible alternative to conventional method namely physical and chemical procedure. In the present research, all the chemical reagents were of analytical grade and used without further purification in these experiments. A conventional heating phytosynthesis route by using Fumaria Officinalis was used to produce the Ag nanoparticles. The radical scavenging activity test was used to check their anti-oxidant activities using 2,2-diphenyl-1-picrylhydrazyl (DPPH). The morphological properties and particle size of synthesized Ag nanoparticles have been confirmed by Scanning Electron Microscope (SEM-EDX), Fourier transform Infrared (FT-IR) and Dynamic Light Scattering (DLS). The synthesized nanoparticles were characterized by XRD for the crystallinity, phase purity and average particle crystallites size. Based on FT IR results the OH groups are responsible for reducing and capping of Ag cations. The increase in the intensity of carbonyl group confirms this issue. Moreover, the synthesized nanoparticles possess a range of diameter between 30-40 nm according to the results of SEM. Antibacterial activity against L.monocylogenes, L.monocytogens and E.coil were investigated. Eventually, a cream containing as-synthesized Ag nanoparticles was produced using Rosa cannina extract through a green method. The data from the present research show that stable and spherical Ag nanoparticles were produced using different concentration of Rosa cannina extract which used as precursor. The findings proved that biosynthesis could produce natural cosmetic products like cream as a bio-friendly and cheap method.
[1] A. T. Harris and V. Bali. "On the formation and extent of uptake of silver nanoparticles by live plants". Journal of Nanoparticle Research, 2008; 10(4): 691-695.
[2] S. Iravani, "Green synthesis of metal nanoparticles using plants". Green Chemistry 2011; 13(10): 2638-2650.
[3] K. N. Thakkar, S. S Mhatre and R. Y Parikh. "Biological synthesis of metallic nanoparticles". Nanomedicine: NBM 2010; 6(2): 257-262.
[4] D. Bhattacharya and R. K. Gupta. "Nanotechnology and potential of microorganisms". Critical Reviews in Biotechnology, 2005; 25(4): 199-204.
[5] D. I. Mandal, M. E. Bolander, D Mukhopadhyay, G. Sarkar and P. Mukherjee. "The use of microorganisms for the formation of metal nanoparticles and their application". Applied Microbiology and Biotechnology 2006; 69(5): 485-492.
[6] J. Kasthuri, K. Kathiravan and N, Rajendiran. "Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach". Journal of Nanoparticle Research 2009; 11(5): 1075-1085.
[7] S. S. Shankar, A. Ahmad, R. Pasricha and M. Sastry. "Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes". Journal of Materials Chemistry. 2003;13(7):1822-6.
[8] S. Ahmed, M. Ahmad, B. L. Swami and S. Ikram. "Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract". Journal of Radiation Research and Applied Sciences. 2016 31;9(1):1-7.
[9] H. S. Lee, U. J. Suh, D. S. Kil, K. Cho, "Fabrication method of ZnO nano-particle and fabrication method of ZnO nano-fluid using thereof "patent No: US 8,512,672 B2
[10] V. V. T. Padil and M. Černík. "Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate andtheir antibacterial application". International Journal of Nanomedicine 2013; 8: 889-898.
[11] W. Brand-Williams and M. Cuvelier, C. Berset. "Use of a free radical method to evaluate antioxidant activity". LWT - Food Science and Technology 1995; 28(1): 25-30.
[12] M. C. Foti, E. R. Johnson, M. R. Vinqvist, J. S. Wright, L. R. Barclay and K. U. Ingold. "Naphthalene diols: a new class of antioxidants intramolecular hydrogenbonding in catechols, naphthalene diols, and their aryloxyl radicals". The Journal of Organic Chemistry 2002; 67(15): 5190-5196.
[13] W. Gregor, G. Grabner, C. Adelwöhrer, T. Rosenau and L. Gille. "Antioxidant properties of natural and synthetic chromanol derivatives: study by fast kinetics andelectron spin resonance spectroscopy". The Journal of Organic Chemistry 2005; 70(9): 3472-3483.
[14] A. Bankar, B. Joshi, A. R. Kumar and S. Zinjarde. "Banana peel extract mediated novel route for the synthesis of silver nanoparticles". Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010; 368: 58-63.
[15] M. Dubey, S. Bhadauria and B. Kushwah. "Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (safeda) leaf". Digest Journal of Nanomaterials and Biostructures 2009; 4: 537-543.
[16] S. S. Shankar, A. Ahmad and M. Sastry. "Geranium leaf assisted biosynthesis of silver nanoparticles". Biotechnology Progress 2003; 19: 1627-1631.
[17] N. A. Begum, S. Mondal, S. Basu, R. A. Laskar and D. Mandal. "Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts". Colloids and Surfaces B: Biointerfaces 2009; 71: 113-118.
[18] V, Kumar, S. C. Yadav and S. K. Yadav. "Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization". Journal of Chemical Technology and Biotechnology 2010; 85: 1301-1309.
[19] E. M. Wenzig, U. Widowitz, O. Kunert, S. Chrubasik, F. Bucar, E. Knauder and R. Bauer, "Phytochemical composition and in vitro pharmacological activity of two rose hip (Rosa canina L.) preparations". Phytomedicine 2008; 15: 826-835.
[20] S. Jafarirad, M. Mehrabi, B. Divband and M. Kosari-Nasab. "Biofabrication of zinc oxide nanoparticles using fruit extract of rosa canina and their toxic potential against bacteria: a mechanistic approach" Materials Science and Engineering: C 2016; 59, 296–302.
[21] S. Jafarirad and S. Poorgholi. "Application of CuO nanoparticles which synthesized using Fumaria officinalis plant extract in preparing hair color to enhance health". Nanomaterials 2015; 7: 95-103.
22- م. ابارشی؛ ا. عبدی "بررسی خاصیت ضد باکتریایی نانوذرات نقره و نانوکامپوزیت های پلی اتیلن-نقره" مجله مواد نوین، دوره 6، شماره 22، زمستان 1394، صفحه 168-159.
_||_