تاثیر نانوذرات دیاکسیدتیتانیوم بر خواص فیزیکی و حرارتی فوم و پانل ساندویچی پلییورتان
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینمژگان کشاورز 1 , سیدمجتبی زبرجد 2 , حبیب دانش منش 3
1 - کارشناسی ارشد مهندسی مواد گرایش شناسایی، دانشکده مهندسی مواد، دانشگاه شیراز، شیراز، ایران
2 - استاد و عضو هیئت علمی، دانشکده مهندسی مواد، دانشگاه شیراز، شیراز، ایران
3 - استاد و عضو هیئت علمی، دانشکده مهندسی مواد، دانشگاه شیراز، شیراز، ایران
کلید واژه: پلییورتان, فوم و پانل ساندویچی, نانوذرات دیاکسید تیتانیوم, خواص فیزیکی, خواص حرارتی,
چکیده مقاله :
نمونههای فوم پلییورتان (PU) منعطف و پانل ساندویچی یکپارچه پلییورتان (PU) تقویت شده با درصدهای وزنی مختلف نانوذرات دیاکسیدتیتانیوم (25/0، 5/0، 75/0، 1، 5/1 و 2) با موفقیت ساخته شدند. در این پژوهش تاثیر نانوذرات دیاکسید تیتانیوم بر خواص فیزیکی و حرارتی نمونههای ذکر شده مورد بررسی قرار گرفت. میکروسکوپ الکترونی روبشی (SEM) بهمنظور مشاهده مورفولوژی ساختار نمونههای پلییورتان مورد استفاده قرار گرفت. نتایج پژوهشها نشان داد که با افزایش نانوذارت دیاکسید تیتانیوم تا 2 درصد وزنی، چگالی فوم و پانل ساندویچی به ترتیب برابر با 2/32% و 6/62% در مقایسه با نمونه خالص افزایش و نیز میزان جذب آب به ترتیب برابر 45% و 8/58% کاهش یافت. نتایج حاصل از آنالیز UV نشان داد که حداکثر مقدار جذب اشعه UV در فوم پلییورتان تقویت شده با 2 درصد وزنی نانوذرات دیاکسید تیتانیوم برابر با 21/3 در طول موج 450 نانومتر میباشد. نتایج بررسیهای آنالیز TGA نشان داد که حضور نانوذرات دیاکسیدتیتانیوم، سبب بهبود پایداری حرارتی نانوکامپوزیتهای پلییورتان میشود. با افزایش نانوذرات دیاکسید تیتانیوم به 1 و 2 درصد وزنی، دمای تخریب کاهش وزن معادل 10 درصد وزنی پلییورتان در مقایسه با نمونه خالص 5/14 درجه سانتیگراد افزایش یافت. همچنین، دمای تخریب 50 درصد کاهش وزنی نمونههای تقویت شده با 1 و 2 درصد وزنی نانوذرات دیاکسید تیتانیوم، به ترتیب 1 و 3 درجه سانتیگراد افزایش یافت.
flexible polyurethane foam (PU) and monolithic polyurethane sandwich panel samples reinforced with different weight percent of TiO2 nanoparticles (0.25, 0.5, 0.75, 1, 1.5 and 2) have been successfully prepared. The effects of TiO2 nanoparticles on the physical and thermal properties of mentioned samples were examined. In order to observe morphological structure of polyurethane (PU) samples, scanning electron microscopy (SEM) were used. Research results showed that by increasing TiO2 nanoparticles to 2 wt.%, the density of foam and sandwich panel increased to 32.2% and 62.6%, respectively in comparison with pure sample and amount of water absorption decreased to 45% and 58.8%, respectively. The results of UV analysis showed that the maximum amount of UV rays absorption in PU foam reinforced with 2 wt.% of TiO2 nanoparticles equals to 3.21 at wavelength of 450 nm. Investigation results of TGA analysis showed that the presence of TiO2 nanoparticles caused improvement thermal stability of PU nanocomposites. By increasing TiO2 nanoparticles to 1 and 2 wt.%, the degradation temperature at weight loss equals to 10 wt.% of PU increased 14.5 ºC in comparison with pure sample. Also the degradation temperature of weight loss equals to 50 wt.% of samples reinforced with 1 and 2 wt.% of TiO2 nanoparticles increased 1 and 3 ºC, respectively.
1- H. Tuwair, M. Hopkins, J. Volz, M. ElGawady, M. Mohamed, K. Chandrashekhara and V. Birman, “Evaluation of Sandwich Panels With Various Polyurethane Foam-Cores and Ribs”, Composites Part B, Vol. 79, pp. 262-276, 2015.
2- H.G Allen, “Analysis and Design of Structural Sandwich Panels”, Pergamon Press, Oxford, p. 283, 1969.
3- م. گلستانی پور و م. توکلی، س.م. زبرجد "بررسی جذب انرژی پنلهای ساندویچی با هسته فوم آلومینیوم تحت آزمون سوراخ کاری"، مجله مواد نوین، جلد 3، شماره 2، صفحه 38-25، زمستان 91.
4- M. Leite, M. Freitas and A. Silva, “Elastic behavior of Sandwich beams- Part 1: experimental study”, In ninth Portuguese Conference on Fracture, Setubal, Portugal. 2004.
5- S.V. Rocca and A., Nanni, “Mechanical Characterization of Sandwich Structure Comprised of Glass Fiber Reinforced Core”: Composites in construction part 2, third international conference lyon, France, july 11 – 13, 2005.
6- L. Zhang, “Structure-Property Relationship of Polyurethene Flexible Foam Made From Oil Polyols”, Ph.D. Dissertation Chemical Engineering & Material Science, University of Minnesota, 2008.
7- J. Lefebvre, B. Bastin, M. Bras, S. Duquesene, R. Paleja and R. Delobel “Thermal Stability and Fire Properties of Conventional Flexible Polyurethane Foam Formulations”, Polymer Degradation Stability, Vol. 88, pp. 28-34, 2005.
8- D. Klempner and V. Sendijarevic “Handbook of Polymeric Foams and Foam Technology”. 2nd Edition, Hanser Publishers, Munich, 2004.
9- M. Antonietti and C. Goltner, “Superstructures of Functional Colloids: Chemistry on the Nanometer Scale”, Angewantde Chemie International Edition in English, Vol. 36, 9, pp. 910-928, 1997.
10- C.H. Defonseka, “Practical Guide to Flexible Polyurethane Foams”, Published by Smithers Rapra Technology Ltd, 2013.
11- M. Uddin and H. Mahfuz, “Anisitropic behavior of rigid polyurethane foam with Acicular Nanoparticles Infusion Under High Strain Rate Compression”, 20th Technical Conference of the American Society for Composites, 2005.
12- M. Islam, H. Mahfuz H., V. Rangari, S. Salekeen and S. Jeelani, “Response Of Sandwich Composites With Nanophased Cores Under Flexural Loading”, Composites Part B: Engineering, Vol.35, 4, pp. 543-550, 2004.
13- M. Uddin, H. Mahfuz, SH. Zainuddin and SH. Jeelani, “Infusion of Spherical and Acicular Nanoparticles into Polyurethane Foam and their Influences on Dynamic Performances”, SEM Annual Conference and Exposition on Experimental and Applied Mechanics, 2005.
14- K. Justin, H. Mahfuz and A. Leif, “Enhancing Mechanical And Fracture Properties Of Sandwich Composites Using Nanoparticle Reinforcement”, Journal Material Science, Vol. 45, pp. 3490–3496, 2010.
15-A. Shaw, S. Sriramula, P. Gosling and M. Chryssanthopoulos, “A Critical Reliability Evaluation of Fibre Reinforced Composite Materials Based on Probabilistic Micro and Macro-Mechanical Analysis", Composites: Part B, Vol 41, pp. 446-453. 2010.
16- W. Chu, L. Wu and V. Karbhari, “Durability Evaluation of Moderate Temperature Cured E-Glass/Vinylester Systems”. Composite Structures, Vol. 66, PP. 367–376, 2004.
17- B.C. Ray, “Temperature Effect During Humid Ageing on Interfaces of Glass And Carbon Fibers Reinforced Epoxy Composites”, Journal Colloid Interface Science, Vol. 298, pp. 111–117, 2006.
18- U. Gaur, C. Chou and B. Miller “Effect of Hydrothermal Ageing on Bond Strength”. Composites, Vol. 25, pp. 609–612, 1994.
19- M. Thirumal, D. Khastgir, N. Singha, B. Manjunath and Y. Naik, “Effect of A Nanoclay on The Mechanical, Thermal And Flame Retardant Properties of Rigid Polyurethane Foam”, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, Vol. 46, 7, pp. 704-712, 2009.
20- L. Chen, R. Straff and X. Wang “Effect of Filler Size on Cell Nucleation During Foaming Process”. SPE-ANTEC, Vol. 59, pp. 1732, 2001.
21- C.B. Park, D.F. Baldwin and N.P. Suh, “Effect of the Pressure Drop Rate on Cell Nucleation in Continuous Processing of Microcellular Polymers”, Polymer Engineering Science, Vol. 35, 5, pp. 432, 1995.
22- J.S. Colton and N.P. Suh, “Nucleation of Microcellular Foam: Theory and Practice”, Polymer Engineering Science, Vol. 27, 7, pp. 500, 1987.
23- S. W. IP, Y. Wang and J. M. Togury, "Aluminum foam stabilization by solid particles", Canadian Metallurgical Quarterly, Vol. 38, pp. 81-92, 1999.
24- L. Feng, “Preparation and Characterization of Polymer TiO2 Nanocomposites via In-situ Polymerization”, PhD Thesis, Waterloo, Ontario, Canada, 2006.
25- N. Haddadine, F. Amrani, V. Arrighi and J. Cowie, “Interpolymer Complexation and Thermal Behaviour of Poly (styrene-co-maleic acid)/Poly (vinyl pyrrolidone) Mixtures”, Thermochimica Acta, Vol. 475, pp. 25-32, 2008.
26- S. Chalal, N. Haddadine, N. Bouslah, S. Souilah, A. Benaboura and R. Barille “Preparation Characterization and Thermal Behaviour of Carbopol-TiO2 Nanocomposites”, Open Journal of Organic Polymer Materials, Vol. 4, PP. 55-64, 2014.
_||_