بررسی اثر غلظت وانادیوم بر خواص اپتیکی و الکتریکی لایه نازک نانو ساختار دی اکسید تیتانیوم تهیه شده به روش سل – ژل
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینمهلا اصغری نژاد 1 , اکبر اسحاقی 2 , علی عرب 3
1 - دانشگاه صنعتی مالک اشتر اصفهان، مجتمع دانشگاهی علوم کاربردی
2 - دانشگاه صنعتی مالک اشتر اصفهان، دانشکده مهندسی مواد
3 - دانشگاه صنعتی مالک اشتر اصفهان، مجتمع دانشگاهی علوم کاربردی
کلید واژه: لایه نازک, مقاومت الکتریکی, دی اکسید تیتانیوم, وانادیوم, خواص اپتیکی,
چکیده مقاله :
در این پژوهش، لایه نازک دی اکسید تیتانیوم آلاییده شده با وانادیوم با غلظتهای مختلف ( 5/1،0 و 5 درصد وزنی) به روش سل-ژل بر روی زیرلایههای شیشهای رسوب داده شد. خواص ساختاری، آنالیز عنصری، الکتریکی، اپتیکی و زبری سطح لایههای نازک به ترتیب توسط روشهای XRD، DES، LCR meter، طیف سنجی UV-Vis و AFM مورد مطالعه قرار گرفت. نتایج الگوی XRD نشان داد که لایههای نازک دارای ساختار پلی کریستالی تتراگونال و تک فاز آناتاز است. همچنین مشاهده میشود، با افزایش غلظت وانادیوم اندازه بلورینگی دی اکسید تیتانیم کاهش مییابد؛ بهگونهای که اندازه متوسط بلورکها از 17 نانومتر برای دی اکسید تیتانیم خالص به حدود 7 نانومتر در حالت آلائیده شده (1 درصد وزنی) کاهش یافته است. بهعلاوه، هیچ فازی مربوط به اکسید وانادیم به علت جایگزینی وانادیم در موقعیت تیتانیم در ساختار دی اکسید تیتانیم تشکیل نشده است. همچنین تصویر FE-SEM از سطح مقطع لایه نازک دی اکسید تیتانیم الائیده شده نشان میدهد که ضخامت لایه حدود 536 نانومتر بوده و دانهها بهصورت پیوسته روی یکدیگر رشد کرده و ساختار پلی کریستالی را تشکیل دادهاند. رافنس لایههای نازک دی اکسید تیتانیم خالص و آلائیده شده با وانادیوم حدود 14/3 نانومتر و 87/0 نانومتر اندازه گیری شد. مقاومت الکتریکی لایههای نازک TiO2 و آلاییده شده با 5/0، 1 و5 درصد وزنی به ترتیب مقادیر Ω cm 107×7/16 ، Ω cm 107×7/7 ، Ω cm 107×7/1 و Ω cm 107×8/12 بهدست آمد. علت افزایش مقاومت در 5 درصد، کاهش موبیلیته با افزایش غلظت حاملها است. مقدار انرژی شکاف نوار با اضافه کردن وانادیم به دی اکسید تیتانیوم از eV 71/3 به eV 44/3 کاهش یافته و در نتیجه لبه جذب به طرف طول موجهای بلندتر جابجا شد.
Doped Titanium dioxide thin film with different concentrations of Vanadium (0.5, 1 and 5 % weight) , was deposited by sol-gel method on glass substrate. Structural, electrical, optical and surface roughness of thin films, were studied by XRD, EDS, LCR meter, UV-Vis spectroscopy and AFM methods, respectively. The XRD results indicated that thin film has an only anatase phase. It is observed that the crystallite sizes of the thin films decreased from 17 nm for pure TO2 to 7 nm for V doped TiO2. In addition, No phases of vanadium oxide formed because the V substituted in the titanium position in the TiO2 crystal structure. The FE-SEM cross section image of the VTO thin film shows that thin film thickness is about 536 nm. The RMS of the pure TiO2 and V doped TiO2 thin films are 3.14 and 0.78 nm, respectively. The resistivity of the thin films of pure TiO2 and doped with 0.5, 1 and 5 wt. % V were 16.7 × 107 Ω cm, 7.7 × 107 Ω cm, 1.7 × 107 Ω cm and 12.8 × 107 Ω cm, respectively. Band gap energy of the samples reduced by adding Vanadium to Titanium dioxide from 3.71 to 3.44 eV and therefore absorption edge Titanium dioxide shifted towards longer wavelengths.
[1]. C. Mrabet, A. Boukhachem, M. Amlouk, T. Manoubi, Improvement of the optoelectronic properties of tin oxide transparent conductive thin films through lanthanum doping, Journal of Alloys and Compounds 666 (2016) 392-405.
[2]. A.Arunachalam, S.Dhanapandian, C.Manoharan, Effect of Sn doping on the structural,optical and electrical properties of TiO2 films prepared by spray pyrolysis, Physica E 76(2016)35–46.
[3]. J. Keller, L. Stolt, M. Edoff, T. Torndahl, Atomic layer deposition of In2O3 transparent conductive oxide layers for application in Cu(In,Ga)Se2 solar cells with different buffer layers, Physics. Status Solidi A, (2016) 1–12.
[4]. A.kbar Eshaghi , M.ohammad Javad Hakimi , A.bbas Zali, Fabrication of titanium zinc oxide (TZO) sol–gel derived nanostructured thin film and investigation of its optical and electrical properties, Optik 126 (2015) 5610–5613.
[5]. Shankar Dutta, Leeladhar, A.khilesh Pandey, O.m P.rakash Thakur, and R.amjay Pal, [N1] Electrical properties of ultrathin titanium dioxide films on silicon, Journal of Vacuum Science & Technology A 33, 021507 (2015) 021507-4.
[N2]
[6]. آ. اسحاقی ، س. حائری پور، تخریب فتوکاتالیستی رنگ راکتیو قرمز 198 توسط نانوکامپوزیت دی اکسید تیتانیم-کربن فعال، مجله مواد نوین ، جلد 7، شماره 2، 1395،صفحه 48-35.
[7] J. Sene, W. A. Zeltner, M. A. Anderson, Fundamental Photoelectrocatalytic and Electrophoretic Mobility Studies of TiO2 and V-Doped TiO2 Thin-Film Electrode Materials, J. Phys. Chem. B, 107 (2003) 1597–1603.
[8] K. Sieradzka, D. Kaczmarek, J. Morgiel, J. Domaradzki, E. Prociow , B. Adamiak, Structural properties of transparent Ti-V oxide semiconductor thin films, Cent. Eur. J. Phys. 11(2) 251-257(2013).
[9]. M. Mokhtarimehr, M. Pakshir, A. Eshaghi, M. H. Shariat, Super-hydrophilic property of vanadium doped TiO2–SiO2 sol–gel derived thin film, Thin Solid Films 532 (2013) 123–126.
[10]. S.S. Lin, Optical properties of TiO2 nanoceramic films as a function of N–Al co-doping, Ceramics International 35 (2009) 2693–2698.
[11]. C.Y. Tsay, H.C.Cheng, Y.T. Tung, W.H. Tuanand, C.K. Lin, Effect of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol-gel method, thin solid films 517 (2008) 1032-1036.
[12]. A.Davoodi, M.Tajally, O.Mirzaee, A.Eshaghi, Fabrication and characterization of optical and electrical properties of Al–Ti co-doped ZnO nano-structured thin film, Journal of Alloys and Compounds, 657 (2016) 296-301.
[13]. J.H. Lee, K.H. Ko and B.O. Park, Electrical and optical properties of ZnO transparent conducting films by the sol-gel method, journal of crystal growth 247 (2003) 119-125.
[14]. Akbar Eshaghi , Alireza Graeli, Optical and electrical properties of indium tin oxide (ITO)nanostructured thin films deposited on polycarbonate substrates“thickness effect”, Optik 125 (2014) 1478– 1481.
[15]. A. Eshaghi, M. Hajkarimi, Optical and electrical properties of aluminum zinc oxide (AZO) nanostructured thin film deposited on polycarbonate substrate, Optik-International Journal for Light and Electron Optics, 125 (2014) 5746-5749.
[16]. A. Davoodi, M. Tajally , O. Mirzaee , A. Eshaghi, The effects of Ti concentration on the structure, optical, and electrical properties of Al and Ti co-doped ZnO thin films, optic optik, 127 (2016) 6445-6449.[N3]
[17]. A.I. Ali, C.H. Kim, J.H. Cho, B.G. Kim, Growth and characterization of ZnO:Al thinfilm using RF sputtering for transparent conducting oxide, Journal of Korean Physics, 49 (2006) S652–S656.
[18]. K. Schellens, B. Capon, C,D. Dobbelaere, C.Detavernier, A. Hardy and M.K. Van beal, Solution derived ZnO:Al films with low resistivity, Thin solid films 524 (2012) 81-85.
[19]. K. Schellens, B. Capon, C,D. Dobbelaere, C.Detavernier, A. Hardy and M.K. Van beal, Solution derived ZnO:Al films with low resistivity, Thin solid films 524 (2012) 81-85.
_||_