طراحی و ساخت حسگر الکتروشیمیایی نانوکامپوزیتی گرافن- بتاسیکلودکسترین به منظور جذب اختصاصی داروهای کورکومین، کلروپرومازین و کلومیپرامین
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینبهزاد میرزایی 1 , محمد رفیعی نیا 2 , علی ضرابی 3
1 - دانشجوی کارشناسی ارشد، دانشگاه اصفهان، دانشکده علوم وفناوریهای نوین، گروه زیست فناوری، اصفهان، ایران
2 - دانشیار، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران
3 - استادیار، دانشگاه اصفهان، دانشکده علوم وفناوریهای نوین، گروه زیست فناوری، اصفهان، ایران
کلید واژه: نانوکامپوزیت, گرافن اکسید, بتاسیکلودکسترین, حسگری الکتروشیمیایی,
چکیده مقاله :
در این پژوهش یک حسگر الکتروشیمیایی جدید به منظور شناسایی داروهای کورکومین، کلروپرومازین و کلومیپرامین طراحی و ساخته شد. در این حسگر از الکترود کربن شیشهای اصلاح شده با نانوکامپوزیت گرافن-بتاسیکلودکسترین استفاده شد. نانوکامپوزیت گرافن- بتاسیکلودکسترین با استفاده از طیفسنجی مادون قرمز فوریه، میکروسکوپ الکترونی با حد تفکیک بالا، ولتامتری چرخهای و تکنیک امپدانس الکتروشیمیایی مشخصهیابی شد. نتایج FTIR بهخوبی نشان داد که مولکولهای بتاسیکلودکسترین با پیوندهای هیدروژنی به صفحات گرافنی متصل میشوند. تصاویر میکروسکوپ الکترونی نشان داد که مولکولهای بتاسکلودکسترین بهطور همگن روی سطح صفحات گرافنی توزیع شدهاند. حسگر ساخته شده پاسخ الکتروشیمیایی مناسبی به داروهای مذکور با استفاده از روش ولتامتری پالس تفاضلی نشان داد و برای داروهای کورکومین، کلروپرومازین و کلومیپرامین به ترتیب پیکهای اکسایشی 48/0 ولت، 61/0 ولت و 31/0 ولت ثبت گردید.
A novel nanocomposite based on graphen oxide and beta cyclodextrin molecules was constructed and used for electrochemical detection of curcumin, chlorpromazine and clomipramine. The obtained beta cyclodextrin- graphen nanocomposite was characterized by Fourier Transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HRTEM) and electrochemical impedance spectroscopy (EIS). FTIR results showed that beta cyclodextrin molecules are attached to graphene sheets with hydrogen bonding. HRTEM images showed single layers of graphene oxide nanosheets and the homogenous distribution of betacyclodextrin molecules on to the surface of graphen oxide sheets. The fabricated sensor represents good electrochemical response toward oxidation of these drugs via differential pulse voltammetry. For curcumin, chlorpromazine and clomipramine oxidation peak current was recorded at 0.48, 0.61 and 0.31 V.
1- J. E. Frew, H. A. O. Hill, Electrochemical biosensors. Analytical Chemistry 59, 933A-944A ,1987.
2- F. Berti, A. P. Turner, New Micro-and Nanotechnologies for Electrochemical Biosensor Development. Nanomaterials for the Life Sciences, 2011.
3- J. Wang, Nanomaterial-based electrochemical biosensors. Analyst 130, 421-426, 2005.
4- K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films. science 306, 666-669 ,2004.
5- M. J. Allen, V. C. Tung, R. B. Kaner, Honeycomb carbon: a review of graphene. Chemical reviews 110, 132-145 ,2009.
6- Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22, 1027-1036 ,2010.
7- S. Alwarappan, C. Liu, A. Kumar, C.-Z. Li, Enzyme-doped graphene nanosheets for enhanced glucose biosensing. The Journal of Physical Chemistry C 114, 12920-12924 ,2010.
8- S. Alwarappan, A. Erdem, C. Liu, C.-Z. Li, Probing the electrochemical properties of graphene nanosheets for biosensing applications. The Journal of Physical Chemistry C 113, 8853-8857 ,2009.
9- E. Norkus, Metal ion complexes with native cyclodextrins. An overview. Journal of Inclusion Phenomena and Macrocyclic Chemistry 65, 237-248 ,2009.
10- E. M. Del Valle, Cyclodextrins and their uses: a review. Process biochemistry 39, 1033-1046,2004.
11- A. Zarrabi, M. Adeli, M. Vossoughi, M. A. Shokrgozar, Design and synthesis of novel polyglycerol hybrid nanomaterials for potential applications in drug delivery systems. Macromolecular bioscience 11, 383-390 ,2011.
12- A. Zarrabi, M. Shokrgozar, M. Vossoughi, M. Farokhi, In vitro biocompatibility evaluations of hyperbranched polyglycerol hybrid nanostructure as a candidate for nanomedicine applications. J Mater Sci: Mater Med 25, 499-506 , 2014.
13- A. Zarrabi, M. Vossoughi, Paclitaxel/β-CD-g-PG inclusion complex: an insight into complexation thermodynamics and guest solubility. Journal of Molecular Liquids 208, 145-150 , 2015.
14- A.Amiri, F.Hafezi, Design and fabrication of Nanotechnologies for Electrochemical Biosensor Development. Nanomaterials for,30-11, 2013.
15- Y. Guo, S. Guo, J. Ren, Y. Zhai, S. Dong, E. Wang, Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host− guest inclusion for enhanced electrochemical performance. Acs Nano 4, 4001-4010, 2010.
16- M. Chen, Y. Meng, W. Zhang, J. Zhou, J. Xie, G. Diao, β-Cyclodextrin polymer functionalized reduced-graphene oxide: Application for electrochemical determination imidacloprid. Electrochimica Acta 108, 1-9 , 2013.
17- K. Oldham, D. Raleigh, Modification of the Cottrell Equation to Account for Electrode Growth; Application to Diffusion Data in the Ag‐Au System. Journal of The Electrochemical Society 118, 252-255, 1971.
18- D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, Improved synthesis of graphene oxide. ACS nano 4, 4806-4814 , 2010.
19- Z. Bacsik, J. Mink, G. Keresztury, FTIR spectroscopy of the atmosphere. I. Principles and methods. Applied spectroscopy reviews 39, 295-363, 2004.
20- L. Scatena, M. Brown, G. Richmond, Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908-912 , 2001.
21- H. Hu, J. H. Xin, H. Hu, X. Wang, X. Lu, Organic Liquids-Responsive β-Cyclodextrin-Functionalized Graphene-Based Fluorescence Probe: Label-Free Selective Detection of Tetrahydrofuran. Molecules 19, 7459-7479 , 2014.
_||_