Preparation of CdIn2S4-CdS nanocomposite via a green route and using them in dot-sensitized solar cells for boosting efficiency
Subject Areas : Journal of Nanoanalysis
1 - New Technology Faculty, Semnan University, Semnan, Iran
Keywords: nanocomposite, Thermal decomposition, CdIn2S4-CdS, QDSSCs,
Abstract :
In this work In2S3 and CdS nanoparticles were prepared by a simple hydrothermal method and then annealed at 500 °C for 2 h in an Ar gas until CdIn2S4(CdIS)-CdS nanocomposites were formed. Afterwards, efficiency of the as-synthesized CdIS-CdS nanocomposite in quantum dot-sensitized solar cells (QDSSCs) was evaluated. For this purpose, the as-prepared CdIS-CdS nanocomposites were deposited on TiO2 by doctor’s blade technique and electrophoresis deposition was used for fabrication of TiO2 layer on the FTO glass substrate. Using CdIS-CdS nanocomposite led to obtaining 1.71% cell efficiency that in comparison with pure CdS (0.97%) and CdIn2S4 nanoparticles (95%), efficiency improvements of 76% and 80% were respectively achieved.
[1] F. Huang, J. Houc, H. Wang, H. Tang, Z. Liu, L. Zhang, Q. Zhang, S. Peng, J. Liu, G. Cao, Nano Energy, 32, 433 (2017).
[2] P. Sehgal and A.K. Narula, Electrochim. Acta, 158, 49 (2015).
[3] M.P.A. Muthalif, Y.S. Lee, C.D. Sunesh, H.J. Kim, Y. Choe, Appl. Surf. Sci., 396, 582 (2017).
[4] O.E. Semonin, J.M. Luther, S. Choi, H.Y. Chen, J. Gao, A.J. Nozik and M.C. Beard, Science, 344, 1530 (2011).
[5] H.J. Lee, J. Bang, J. Park, S. Kim and S.M. Park, Chem. Mater., 22, 5636 (2010).
[6] R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev and A.L. Efros, Nano lett., 5, 865 (2005).
[7] N. Parsi Benehkohal, V. González-Pedro, P.P. Boix, S. Chavhan, R. Tena-Zaera, G.P. Demopoulos and I. Mora-Seró, J. Phys. Chem. C, 116, 16391 (2012).
[8] P. Lv, W. Fu, H. Yang, H. Sun, Y. Chen, J. Ma, X. Zhou, L. Tian, W. Zhang and M. Li, Cryst. Eng. Comm., 15, 7548 (2013).
[9] J. Tian, R. Gao, Q. Zhang, S. Zhang, Y. Li, J. Lan, X. Qu and G. Cao, J. Phys. Chem. C, 116, 18655 (2012).
[10] J. Wang, I. Mora-Seró, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong and J. Bisquert, J. Am. Chem. Soc., 135, 15913 (2013).
[11] S.H. Im, H.-j. Kim, S.W. Kim, S.-W. Kim and S.I. Seok, Nanoscale, 4, 1581 (2012).
[12] D. Esparza, I. Zarazúa, T. López-Luke, R. Carriles, A. Torres-Castro and E. De la Rosa, Electrochim. Acta, 180, 486 (2015).
[13] V. Gonzalez-Pedro, X. Xu, I. Mora-Sero and J. Bisquert, ACS Nano, 4, 5783 (2010).
[14] P. V. Kamat, J. Phys. Chem. C, 112, 18737 (2008).
[15] W. Ma, S.L. Swisher, T. Ewers, J. Engel, V.E. Ferry, H.A. At water and A.P. Alivisatos, ACS Nano, 5, 8140 (2011).
[16] D. Segets, J. M. Lucas, R.N.K. Taylor, M. Scheele, H. Zheng, A.P. Alivisatos and W. Peukert, ACS Nano, 6, 9021 (2012).
[17] V. González-Pedro, X. Xu, I. Mora-Seró and J. Bisquert, ACS Nano, 4, 5783 (2010).
[18] S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L.J. Diguna, Q. Shen, T. Toyoda and J. Bisquert, Nanotechnol., 20, 295204 (2009).
[19] J. Jasieniak, M. Califano and S.E. Watkins, ACS Nano, 5, 5888 (2011).
[20] M. Mousavi-Kamazani, Z. Salehi and K. Motevalli, Appl. Phys. A, 123, 691 (2017).
[21] S.T. Connor, C.M. Hsu, B.D. Weil, S.Aloni and Y. Cui, J. Am. Chem. Soc., 131, 4962 (2009).
[22] M. Mousavi-Kamazani, M. Salavati-Niasari, M. Goudarzi and Z. Zarghami, J. Molecular Liquids, 242, 653 (2017).
[23] M. Mousavi-Kamazani, Z. Zarghami and M. Salavati-Niasari, J. Phys. Chem. C, 120, 2096 (2016).
[24] M. Mousavi-Kamazani, M. Salavati-Niasari, H. Emadi, Mater. Res. Bull. 47, 3983 (2012).
[25] M.T. Taghizadeh, M. Vatanparast, J. Colloid Interface Sci., 483, 1 (2016).
[26] M. Vatanparast, M.T. Taghizadeh, J. Mater. Sci.: Mater. Electron. 27, 54 (2016).