Facile synthesis of Ni/NiO nanocomposites via thermal decomposition
Subject Areas : Journal of NanoanalysisAliakbar Dehno Khalaji 1 * , Gholamhossein Grivani 2 , Shaghayegh Izadi 3 , Mehdi Ebadi 4
1 - Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
2 - School of Chemistry, Damghan University, Damghan, Iran
3 - School of Chemistry, Damghan University, Damghan, Iran
4 - Department of Chemistry, Islami Azad University, Gorgan Branch, Gorgan, Iran
Keywords: TEM, XRD, Thermal decomposition, Ni/NiO nanocomposites,
Abstract :
In this study, Ni/NiO nanocomposites were prepared using simple, environment-friendly and low-cost solid-state thermal decomposition method from nickel (II) Schiff base complex at 400 and 500°C for 3 hours. The Ni/NiO nanocomposites were characterized with Fourier transformed infra-red spectroscopy (FT-IR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and X-Ray fluorescence (XRF). Results of XRD and XRF confirmed that the nanocomposite products contain a mixture of nickel and nickel oxide. The Ni or NiO content varied with the temperature used for the synthesis. Upon increasing the temperature from 400 to 500°C, the amount of NiO was found to be increased due to a complete oxidation of Ni to NiO. The TEM images demonstrated that the composites were spherical with a distribution size of about 10-30 nm. In addition, the products displayed reasonable electrochemical performance.
1. J. Kacher, P. Elizaga, S.D House, K. Hatter, M. Nowell, I.M. Robertson, Mater. Sci. Eng. A 568, 49-60 (2013).
2. S. Guo, W. Liu, H. Meng, X.H. Liu, W.J. Gong, Z. Han, Z.D. Zhang, J. All. Compd. 497, 10-13 (2010).
3. S. D’Addato, M.C. Spadaro, P. Luches, V. Grillo, S. Frabboni, S. Valeri, A.M. Ferretti, E. Capetti, A. Ponti, App. Surf. Sci. 306, 2-6 (2014).
4. Q. Xia, H. Zhao, Y. Teng, Z. Du, J. Wang, T. Zhang, Mater. Lett. 142, 67-70 (2015).
5. X.H. Huang, J.P. Tu, B. Zhang, C.Q. Zhang, Y. Li, Y.F. Yuan, H.M. Wu, J. Power Sources 161, 541-544 (2006).
6. P. Huang, X. Zhang, J. Wei, J. Pan, Y. Sheng, and B. Feng, Mater. Res. Bull. 63, 112-115 (2015).
7. X. Li, A. Dhanabalan, and C. Wang, J. Power Sources 196, 9625-9630 (2011).
8. X. Sun, W. Si, X. Liu, J. Deng, L. Xi, L. Liu, C. Yan, O.G. Schmidt, Nano Energy 9, 168-175 (2014).
9. X. Yan, L. Tian, and X. Chen, J. Power Sources 300, 336-343 (2015).
10. X. Yan, X. Tong, J. Wang, C. Gong, M. Zhang, and L. Liang, Mater. Lett. 106, 250-253 (2013).
11. S. Song, S. Yao, J. Cao, L. Di, G. Wu, N. Guan, L. Li, Appl. Catal. B. 217, 115-124 (2017).
12. T. Liu, Y. Pang, X. Xie, W. Qi, Y. Wu, S. Kobayashi, J. Zheng, X. Li, J. All. Compd. 667, 287-286 (2016).
13. W. Xiang, Y. Liu, J. Yao, R. Sun, Phys. E. 97, 363-367 (2018).
14. H.A. Chaghouri, F. Tuna, P.N. Santhosh, P. J. Thomas, Solid State Commun. 230, 11-15 (2016).
15. B.B. Nayak, S. Vitta, A.K. Nigam, D. Bahadur, Thin Sol. Films 505, 109-112 (2006).
16. B. Gokul, P. Saravanan, V.T.P. Vinod, and M. Cernik, Powder. Technol. 274, 98-104 (2015
17. K. Mahendraprabhu, and P. Elumalai, J. Sol-Gel. Sci. Technol. 73, 428-433 (2015).
18. V. Ganeshchandra Prabhu, P.S. Shajira, N. Lakshmi, and M. Junaid Bushiri, J. Phys. Chem. Solids. 87, 238-243 (2015).
19. F. Farzaneh, and S.H. Kashani, J. Cer. Process. Res. 14, 673-676 (2013).
20. L.A. Garcia-Cerda, K.M. Bernal-Ramos, S.M. Montemayor, M.A. Quevedo-Lopez, R. Betancourt-Galindo, D. Bueno-Baques, J. Nanomaterials 1-6 (2011).
21. J. Kim, B.-H. Choi, M. Kang, Powder Tech. 249, 419-423 (2013).
22. A.D. Khalaji, and D. Das, Int. J. Bio-inorg. Hybr. Nanomater. 4, 59-64 (2015).
23. A.D. Khalaji, J. Ultrafine Grained Nanostruct. Mater. 48, 1-4 (2015).
24. M. Ebadi, W.J. Basirun, Y.-L. Sim, and M.R. Mahmoudian, Metal. Mate. Trans. A. 44, 5096-5105 (2013).
25. R.L. Lal, M. Mandal, L. Roy, J. Mukherjee, R. Bhawal, and K. Maiti, Ind. J. Chem. A 47, 1480-1485 (2008).