Fabrication of nano S646 bioactive glass and the effect of adding it to chitosan nanocomposites / carbon nanotubes for bone regeneration
Subject Areas : Journal of NanoanalysisFateme Mirjalili 1 * , Mahboobeh Mahmoodi 2 , Farniya Mohammadifar 3
1 - Department of Material Engineering, Maybod Branch, Islamic Azad University, Maybod, Iran
2 - Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran | Joint Reconstruction Research Center, Tehran University of Medical Sciences, Tehran, Iran
3 - Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
Keywords: MTT Assay, Chitosan, Carbon Nanotube, Bioglass of S646,
Abstract :
Nanoscale bioactive glasses have been gaining attention due to their superior osteoconductivity. The combination of bioactive glass nanoparticles with polymeric systems enables the production of nanocomposites with potential to be used in a series of orthopedic applications, including tissue engineering and regenerative.This research has been done to study characteristic and biocompatible evaluation of a nano bio composite ceramic. In this regard synthesis of this S646 bioactive glass has been considered afterwards, the bioglass S646/chitosan/carbon nanotube with different amount of S646 bioactive glass has been synthesized by sol-gel method. The synthesized nanoparticles and nanocomposite have been characterized with the help of different techniques, using field emission scanning electron microscope, x-ray powder diffraction, fourier-transform infrared spectroscopy to evaluate crystal structure, microstructure and morphology. The results indicated that, the synthesized bioglass S646/chitosan/carbon nantube nanocomposite with the average particle size of about 41-49 nm and percentages of crystallinity about 64-86% for all samples. Result of FTIR analyses showed that, the purity in the structure of bioglass of S646 and nano composites.The outcomes revealed that, with increase of the amount of S646 bioactive glass changed the shape of the particles from spherical and reduced the particle size, which owing to the increase of amorphous phase in the material which reduced the crystallinity and crystal size of nanocomposite particles. The result of MTT assay indicated nontoxicity and also increasing the percentage of bioactive glass also increased cell viability.
[ 1] Baino F , Hamzehlou S , Kargozar S. Bioactive glasses: Where are we and where are we going. J. Funct. Biomater.2018; 9:1-26.
https://doi.org/10.3390/jfb9010025
[2] Fathi M H , Hanifi A l-gel method, Mater. Lett.2007; 61 : 3978-3983.
https://doi.org/10.1016/j.matlet.2007.01.028.
[3] Hench L L , Jones R J. Bioactive materials for tissue engineering scaffolds, Biomedical Materials Research.2007; 28: 685-695.
https://doi.org/10.1016/j.apsusc.2010.03.124
[4] Paluszkiewicz CA , Slosarczyk A , Pijocha D , Sitarz M , Bucko M M , Zima A. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite. Journal of Molecular Structure.2010; 976:301-309.
https://doi.org/10.1016/j.molstruc.2010.04.001
[5] Baino F , Novajra G , Brovarone C . Bioceramics and Scaffolds: A winning Combination for Tissue engineering. Frontiers in Bioengineering and Biotechnology.2015; 3:1-17.https://doi.org/10.3389/fbioe.2015.00202
[6] Khoshakhlagh P. Development and characterization of a bioglass/chitosan composite as an injectable bone substitute. Carbohyd Polym.2017; 157:1261-1271.
https://doi.org/10.1016/j.carbpol.2016.11.003
[7] Shankhwar N, Srinivasan A. Influence of phosphate precursors on the structure, crystallization behaviour and bioactivity of sol-gel derived 45S5 bioglass. RSC AdvANCES.2015; l5:100762-100768.
https://doi.org/10.1039/C5RA19184J
[8] Kokubo T. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials.2007; 27:2907-2915.
https://doi.org/10.1016/j.biomaterials.2006.01.017
[9] Jmal N , Bouaziz J . Synthesis, characterization and bioactivity of a calcium-phosphate glass-ceramics obtained by the sol-gel processing method. Mater Sci Eng C. 2017;71: 279-288.
https://doi.org/10.1016/j.msec.2016.09.058
[10] Lindfors N. Bioactive glass S53P4 as bone graft substitute in treatment of osteomyelitis. Bone. 2010;47: 212-218.
https://doi.org/10.1016/j.bone.2010.05.030
[11] Pishbin F,Simchi A, Ryan M P,Boccaccini A R.Surface & Coatings Technology Electrophoretic deposition of chitosan / 45S5 Bioglass ® composite coatings for orthopaedic applications. Surf. Coat. Technol.2011; 205:5260-8.
https://doi.org/10.1016/j.surfcoat.2011.05.026
[12] Seo S , Kim J , Kim J , Lee J , Sang U, Lee E , Kim H. Enhanced mechanical properties and bone bioactivity of chitosan / silica membrane by functionalized-carbon nanotube incorporation. Compos. Sci. Technol. 2014;96: 31-7.
https://doi.org/10.1016/j.compscitech.2014.03.004
[13] Jinshu M , Swapna K , Hai-Feng J , Michael J , Mc S. Study of the Near-Neutral pH-Sensitivity of Chitosan/Gelatin Hydrogels by Turbidimetry and Microcantilever Deflection. Biotechnology and Bioengineering.2020; 1-9.
[14] Diky M , Caroline W ,Heni R.. Encapsulation of Risperidone into Chitosan-based Nanocarrier via Ionic Binding Interaction. Procedia Chemistry.2014;13;92-100.
https://doi.org/10.1016/j.proche.2014.12.011
[15] Liu XG. Preparation of Ibuprofen chitosan/montmorillonite microspheres by ionic cross-linking under microwave irradiation. Indian Journal of Chemical Technology (IJCT).2016;23:308-312.
[16] Vuong X , Mai Q , Tien Anh N , Hoa T , Investigation of Bioactive Glass-Ceramic 60SiO2-30CaO-10P2O5 Prepared by Hydrothermal Method. Advanced Dental Biomaterials and Therapeutic Substances.2019; 2019:1-9.
[17] Durgalakshmi D, Rakkesh R A , Balakumar S . Stacked bioglass/TiO2 nanocoatings on titanium substrate for enhanced osseointegration and its electrochemical corrosion studies Appl. Surf. Sci..2015; 349:561-9.
https://doi.org/10.1016/j.apsusc.2015.04.142
[18]Pan L , Pei X , He R , Wan Q , Wang J. Colloids and Surfaces B : Biointerfaces Multiwall carbon nanotubes / polycaprolactone composites for bone tissue engineering application. Colloids Surfaces B Biointerfaces.2012; 93:226-34.
https://doi.org/10.1016/j.colsurfb.2012.01.011
[19] P Newman,A Minett , R Ellis-Behnke, H Zreiqat. Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering, Nanomedicine: Nanotechnology. Biology and Medicine.2013;9:1139-1158.
https://doi.org/10.1016/j.nano.2013.06.001
[20] Y Usui , K Aoki , N Narita , N Murakami , I Nakamura , K Nakamura , N Ishigaki , H Yamazaki , H Horiuchi , H Kato , S Taruta, Y A Kim , M Endo , N Saito. Carbon Nanotubes with High Bone-Tissue Compatibility and Bone-Formation Acceleration Effects. Smal.2008;4 :240-246.
https://doi.org/10.1002/smll.200700670
[21] N O Chahine , N M Collette , C B Thomas , D C Genetos , G G Loots. Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: effects of carbon nanotube surface functionalization.Tissue engineering. Part A.2014; 20:2305-2315.
https://doi.org/10.1089/ten.tea.2013.0328
[22] F Mei , J Zhong , X Yang , X Ouyang , S Zhang , X Hu , Q Ma , J Lu , S Ryu , X Deng. Improved Biological Characteristics of Poly(l-Lactic Acid) Electrospun Membrane by Incorporation of Multiwalled Carbon Nanotubes/Hydroxyapatite Nanoparticles, Biomacromolecules.2007; 8:3729-3735.
https://doi.org/10.1021/bm7006295
[23] A Abarrategi , M C Gutierrez , C Moreno-Vicente , M J Hortiguela , V Ramos, J L Lopez-Lacomba , M L Ferrer , F del Monte. Multiwall carbon nanotube scaffolds for tissue engineering purposes, Biomaterials.2008;29 :94-102.
https://doi.org/10.1016/j.biomaterials.2007.09.021
[24] A R Boccaccini , F Chicatun , J Cho O. Bretcanu , J A Roether, S Novak , Q Z Chen. Carbon Nanotube Coatings on Bioglass-Based Tissue Engineering Scaffolds. Advanced Functional Materials.2007;17: 2815-2822.
https://doi.org/10.1002/adfm.200600887
[24] E Hirata , M Uo , H Takita , T Akasaka , F Watari , A Yokoyama. Development of a 3D collagen scaffold coated with multiwalled carbon nanotubes. Journal of Biomedical Materials Research Part B: Applied Biomaterials.2009;90: 629-634.
https://doi.org/10.1002/jbm.b.31327
[25] X Li , X Liu , J Huang , Y Fan , F-z Cui. Biomedical investigation of CNT based coatings, Surface and Coatings Technology.2011;206:759-766.
https://doi.org/10.1016/j.surfcoat.2011.02.063
[26] J N Coleman , U Khan , W J Blau, Y K Gun’ko. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon.2006;44:1624-1652.
https://doi.org/10.1016/j.carbon.2006.02.038
[27] N Song , H Liu , Y Yuan , X Li , J Fang. Fabrication and Corrosion Resistance of SiC-coated Multi-walled Carbon Nanotubes. Journal of Materials Science & Technology.2013;29:1146-1150.
https://doi.org/10.1016/j.jmst.2013.10.006
[28] K Hernadi , E Ljubović , J W Seo , L Forró. Synthesis of MWNT-based composite materials with inorganic coating. Acta Materialia.2003;51:1447-1452.
https://doi.org/10.1016/S1359-6454(02)00539-6
[29] T Seeger, T Köhler , T Frauenheim , N Grobert , M Rühle , M Terrones , G Seifert. Nanotube composites: novel SiO2 coated carbon nanotubes. Chemical Communications. 2002; 34-35.
https://doi.org/10.1039/b109441f
[30] T Lei , L Wang , C Ouyang , N.-F Li , L.-S Zhou. In Situ Preparation and Enhanced Mechanical Properties of Carbon Nanotube/Hydroxyapatite Composites. International Journal of Applied Ceramic Technology.2011; 8 : 532-539.
https://doi.org/10.1111/j.1744-7402.2010.02602.x
[31] P Khalid , M Hussain , P Rekha , A Arun. Synthesis and characterization of carbon nanotubes reinforced hydroxyapatite composite. Indian Journal of Science and Technology.2013; 6 : 5546-5551.
[32] R Sergi, D Bellucci , V Cannillo. A Review of Bioactive Glass/Natural Polymer Composites: State of the Art.Materials.2021;13:5560-5598.
[33] S Shrestha,B Kumar, S Sung W Ko, R Kandel, C H Park, C SangKim, Engineered cellular microenvironments from functionalized multiwalled carbon nanotubes integrating Zein/Chitosan @Polyurethane for bone cell regeneration. Carbohydrate Polymers.2021;251:117035-117045.
[34] L Zhao , L Gao. Novel in situ synthesis of MWNTs-hydroxyapatite composites. Carbon.2004;42:423-426.
https://doi.org/10.1016/j.carbon.2003.10.024
[35] S Mukherjee , B Kundu , A Chanda , S Sen. Effect of functionalisation of CNT in the preparation of HAp-CNT biocomposites.Ceramics International.2015;41:3766-3774.
https://doi.org/10.1016/j.ceramint.2014.11.052
[36] S Vahedi , R Mehdinavaz aghdam , A Rezayan , M Heydarzadeh Sohi. Carbon nanotubes reinforced electrospun chitosan nanocomposite coatng on anodized AZ31 magnesium alloy. Journal of Ultrafne Grained and Nanostructured Materials.2020;53:71-77.