The application of ZnO nanoparticles as a photocatalyst for wastewater treatment: A review
Subject Areas : Journal of NanoanalysisMahdi Sanavi Fard 1 , Aref Shokri 2
1 - tafresh university
2 - Jundi-Shapur Research Institute, Dezful, Iran.
Keywords: Wastewater treatment, Bandgap, photocatalytic method, electron-hole pairs, zinc oxide and graphene oxide,
Abstract :
Ever-increasing environmental pollutions and water scarcity are highly challenging issues that pose formidable obstacles to human beings on all fronts. Hetero-photocatalytic methods which utilized semiconductors as photocatalysts are highly promising and green technologies for the degradation of recalcitrant organic pollutants which cannot be completely removed by conventional treatment processes. In the view of the current scenario, zinc oxide nanostructures have been demonstrated to be predominant photocatalyst candidates for photodegradation because of their cost-effectiveness, non-toxicity, strong oxidation capability, flexibility in synthesizing, earth-abundance nature, easy crystallization, and high performance in the absorption over an extensive fraction of solar spectrum in comparison with titanium dioxide. Nevertheless, bare zinc oxide possesses several intrinsic limitations, like high recombination rate of the photogenerated charge carriers, limited solar light application, photo corrosion, broad bandgap and limited visible light absorption. Moreover, photocatalysts separation from remediated solutions restricts their large-scale applications. In this review paper, the authors briefly discussed basic principles of the zinc oxide photocatalytic process besides various modifications such as coupling with low bandgap semiconductors like metal and non-metal doping, synthesizing with graphene oxide, or reduced graphene oxide and their integration in magnetic materials to successfully addressing aforesaid disconcerting challenges. Moreover, hybridized photocatalytic and membrane systems are explored. Finally, challenges and future research directions are proposed for giving profound and well-defined insights toward reaching fully exploited zinc oxide-based nanoparticles in the field of water and wastewater treatments.
References
[1] T.W. Hartley, Desalination. 187: 115 (2006). https://doi.org/10.1016/J.DESAL.2005.04.072.
[2] M.H. Plumlee, J. Larabee, M. Reinhard, Chemosphere. 72: 1541 (2008). https://doi.org/10.1016/J.CHEMOSPHERE.2008.04.057.
[3] H.X. Guo, K.L. Lin, Z.S. Zheng, F. Bin Xiao, S.X. Li, Dye. Pigment. 92: 1278 (2012). https://doi.org/10.1016/J.DYEPIG.2011.09.004.
[4] J.L. Capelo-Martínez, P. Ximénez-Embún, Y. Madrid, C. Cámara, TrAC Trends Anal. Chem. 23: 331 (2004). https://doi.org/10.1016/S0165-9936(04)00401-7.
[5] S. Malato, J. Blanco, A. Vidal, C. Richter, Appl. Catal. B Environ. 37: 1 (2002). https://doi.org/10.1016/S0926-3373(01)00315-0.
[6] K.H. Wang, H.H. Tsai, Y.H. Hsieh, Chemosphere. 36: 2763 (1998). https://doi.org/10.1016/S0045-6535(97)10235-1.
[7] M. Abdolkarimi, F. Soleimani, A. Shokri, J. Nanoanalysis. 0: (2022). https://doi.org/10.22034/JNA.2022.1934052.1262.
[8] A. Shokri, Desalin. Water Treat. 247: 92 (2022). https://doi.org/10.5004/dwt.2022.28037.
[9] A. Shokri, S. Karimi, J. Water Environ. Nanotechnol. 6: 326 (2021). https://doi.org/10.22090/jwent.2021.04.004.
[10] M. Rostami, A. Hassani Joshaghani, H. Mazaheri, A. Shokri, Int. J. Eng. Trans. A Basics. 34: 756 (2021). https://doi.org/10.5829/ije.2021.34.04a.01.
[11] A. Shokri, K. Mahanpoor, J. Chem. Heal. Risks. 6: 213 (2016).
[12] M. Rostami, H. Mazaheri, A. Hassani Joshaghani, A. Shokri, Int. J. Eng. Trans. B Appl. 32: 1074 (2019). https://doi.org/10.5829/ije.2019.32.08b.03.
[13] A. Shokri, Int. J. Nano Dimens. 7: 160 (2016).
[14] A. Shokri, K. Mahanpoor, D. Soodbar, J. Environ. Chem. Eng. 4: 585 (2016). https://doi.org/10.1016/j.jece.2015.11.007.
[15] O. Autin, J. Hart, P. Jarvis, J. MacAdam, S.A. Parsons, B. Jefferson, Water Res. 47: 2041 (2013). https://doi.org/10.1016/J.WATRES.2013.01.022.
[16] P. Monneyron, M.H. Manero, J.N. Foussard, F. Benoit-Marquié, M.T. Maurette, Chem. Eng. Sci. 58: 971 (2003). https://doi.org/10.1016/S0009-2509(02)00637-1.
[17] I.A. Alaton, I.A. Balcioglu, J. Photochem. Photobiol. A Chem. 141: 247 (2001). https://doi.org/10.1016/S1010-6030(01)00440-3.
[18] R.L. Ziolli, W.F. Jardim, J. Photochem. Photobiol. A Chem. 155: 243 (2003). https://doi.org/10.1016/S1010-6030(02)00397-0.
[19] L. Cermenati, D. Dondi, M. Fagnoni, A. Albini, Tetrahedron. 59: 6409 (2003). https://doi.org/10.1016/S0040-4020(03)01092-5.
[20] M. Klare, J. Scheen, K. Vogelsang, H. Jacobs, J.A.C. Broekaert, Chemosphere. 41: 353 (2000). https://doi.org/10.1016/S0045-6535(99)00447-6.
[21] A. nan Wang, Y. Teng, X. feng Hu, L. hua Wu, Y. juan Huang, Y. ming Luo, P. Christie, Sci. Total Environ. 541: 348 (2016). https://doi.org/10.1016/J.SCITOTENV.2015.09.023.
[22] H. An, J. Zhou, J. Li, B. Zhu, S. Wang, S. Zhang, S. Wu, W. Huang, Catal. Commun. 11: 175 (2009). https://doi.org/10.1016/J.CATCOM.2009.09.020.
[23] X. Wang, S. Zhang, B. Peng, H. Wang, H. Yu, F. Peng, Mater. Lett. 165: 37 (2016). https://doi.org/10.1016/J.MATLET.2015.11.103.
[24] J.M. Macák, H. Tsuchiya, A. Ghicov, P. Schmuki, Electrochem. Commun. 7: 1133 (2005). https://doi.org/10.1016/J.ELECOM.2005.08.013.
[25] D. Wang, Y. Wang, X. Li, Q. Luo, J. An, J. Yue, Catal. Commun. 9: 1162 (2008). https://doi.org/10.1016/J.CATCOM.2007.10.027.
[26] M. SONG, L. BIAN, T. ZHOU, X. ZHAO, J. Rare Earths. 26: 693 (2008). https://doi.org/10.1016/S1002-0721(08)60165-9.
[27] A. Hassani Joshaghani, F. Soleimani, M. Sanavi Fard, A. Shokri, J. Nanoanalysis. 0: (2022). https://doi.org/10.22034/JNA.2022.1935754.1266.
[28] S. Karimi, A. Shokri, J. Nanoanalysis. 8: 167 (2021). https://doi.org/10.22034/jna.001.
[29] R. Hekmatshoar, A.R. Yari, A. Shokri, J. Nanoanalysis. 7: (2020). https://doi.org/10.22034/jna.
[30] A. Shokri, K. Mahanpoor, Bulg. Chem. Commun. 50: 27 (2018).
[31] A. Shokri, M. Salimi, T. Abmatin, Fresenius Environ. Bull. 26: 1560 (2017).
[32] R. Qiu, D. Zhang, Y. Mo, L. Song, E. Brewer, X. Huang, Y. Xiong, J. Hazard. Mater. 156: 80 (2008). https://doi.org/10.1016/J.JHAZMAT.2007.11.114.
[33] J. Fenoll, E. Ruiz, P. Hellín, P. Flores, S. Navarro, Chemosphere. 85: 1262 (2011). https://doi.org/10.1016/J.CHEMOSPHERE.2011.07.022.
[34] A. Shokri, Environ. Challenges. 5: 100332 (2021). https://doi.org/10.1016/j.envc.2021.100332.
[35] M. Saghi, A. Shokri, A. Arastehnodeh, M. Khazaeinejad, A. Nozari, J. Nanoanalysis. 5: 163 (2018). https://doi.org/10.22034/JNA.2018.543608.
[36] A. Shokri, K. Mahanpoor, D. Soodbar, Fresenius Environ. Bull. 25: 500 (2016).
[37] A. Shokri, F. Rabiee, K. Mahanpoor, Int. J. Environ. Sci. Technol. 14: 2485 (2017). https://doi.org/10.1007/s13762-017-1346-7.
[38] F. Torrades, M. Pérez, H.D. Mansilla, J. Peral, Chemosphere. 53: 1211 (2003). https://doi.org/10.1016/S0045-6535(03)00579-4.
[39] A. Shokri, Surfaces and Interfaces. 21: 100705 (2020). https://doi.org/10.1016/J.SURFIN.2020.100705.
[40] I. Muñoz, J. Rieradevall, F. Torrades, J. Peral, X. Domènech, Sol. Energy. 79: 369 (2005). https://doi.org/10.1016/J.SOLENER.2005.02.014.
[41] S. Rodriguez, A. Santos, A. Romero, Desalination. 280: 108 (2011). https://doi.org/10.1016/J.DESAL.2011.06.055.
[42] R. Molinari, L. Palmisano, V. Loddo, S. Mozia, A.W. Morawski, Handb. Membr. React. 2: 808 (2013). https://doi.org/10.1533/9780857097347.4.808.
[43] O.M. Alfano, D. Bahnemann, A.E. Cassano, R. Dillert, R. Goslich, Catal. Today. 58: 199 (2000). https://doi.org/10.1016/S0920-5861(00)00252-2.
[44] K. Choi, T. Kang, S.G. Oh, Mater. Lett. 75: 240 (2012). https://doi.org/10.1016/J.MATLET.2012.02.031.
[45] Aref Shokri; Mahdi Sanavi Fard, J. Nanoanalysis. in press: (2022).
[46] E. Gharoy Ahangar, M.H. Abbaspour-Fard, N. Shahtahmassebi, M. Khojastehpour, P. Maddahi, J. Food Process. Preserv. 39: 1442 (2015). https://doi.org/10.1111/JFPP.12363.
[47] M. Al-Fori, S. Dobretsov, M.T.Z. Myint, J. Dutta, 30: 871 (2014). https://doi.org/10.1080/08927014.2014.942297.
[48] S. Liang, K. Xiao, Y. Mo, X. Huang, J. Memb. Sci. 394–395: 184 (2012). https://doi.org/10.1016/J.MEMSCI.2011.12.040.
[49] J.M. Herrmann, Catal. Today. 53: 115 (1999). https://doi.org/10.1016/S0920-5861(99)00107-8.
[50] D. Rajamanickam, M. Shanthi, Arab. J. Chem. 9: S1858 (2016). https://doi.org/10.1016/J.ARABJC.2012.05.006.
[51] M.A. Rauf, S.S. Ashraf, Chem. Eng. J. 151: 10 (2009). https://doi.org/10.1016/J.CEJ.2009.02.026.
[52] Y. Meng, Y. Lin, J. Yang, Appl. Surf. Sci. 268: 561 (2013). https://doi.org/10.1016/J.APSUSC.2012.12.171.
[53] G. Jimenez-Cadena, E. Comini, M. Ferroni, A. Vomiero, G. Sberveglieri, Mater. Chem. Phys. 124: 694 (2010). https://doi.org/10.1016/J.MATCHEMPHYS.2010.07.035.
[54] S.M. Ng, D.S.N. Wong, J.H.C. Phung, H.S. Chua, Talanta. 116: 514 (2013). https://doi.org/10.1016/J.TALANTA.2013.07.031.
[55] A. V. Desai, M.A. Haque, Sensors Actuators A Phys. 134: 169 (2007). https://doi.org/10.1016/J.SNA.2006.04.046.
[56] E.S. Jang, J.H. Won, S.J. Hwang, J.H. Choy, Adv. Mater. 18: 3309 (2006). https://doi.org/10.1002/ADMA.200601455.
[57] J. Luo, S.Y. Ma, A.M. Sun, L. Cheng, G.J. Yang, T. Wang, W.Q. Li, X.B. Li, Y.Z. Mao, D.J. Gz, Mater. Lett. 137: 17 (2014). https://doi.org/10.1016/J.MATLET.2014.08.108.
[58] L. Qi, H. Li, L. Dong, Mater. Lett. 107: 354 (2013). https://doi.org/10.1016/J.MATLET.2013.06.054.
[59] F. Xie, A. Centeno, B. Zou, M.P. Ryan, D.J. Riley, N.M. Alford, J. Colloid Interface Sci. 395: 85 (2013). https://doi.org/10.1016/J.JCIS.2012.12.028.
[60] X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Sci. Reports 2014 41. 4: 1 (2014). https://doi.org/10.1038/srep04596.
[61] Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, J. Nanomater. 2012: (2012). https://doi.org/10.1155/2012/624520.
[62] M. Li, J.C. Li, Mater. Lett. 60: 2526 (2006). https://doi.org/10.1016/J.MATLET.2006.01.032.
[63] P. Banerjee, S. Chakrabarti, S. Maitra, B.K. Dutta, Ultrason. Sonochem. 19: 85 (2012). https://doi.org/10.1016/J.ULTSONCH.2011.05.007.
[64] F. Wang, X. Qin, Z. Guo, Y. Meng, L. Yang, Y. Ming, Ceram. Int. 39: 8969 (2013). https://doi.org/10.1016/J.CERAMINT.2013.04.096.
[65] M. Thamima, S. Karuppuchamy, Procedia Mater. Sci. 11: 320 (2015). https://doi.org/10.1016/J.MSPRO.2015.11.101.
[66] Y. Fang, Z. Li, S. Xu, D. Han, D. Lu, J. Alloys Compd. 575: 359 (2013). https://doi.org/10.1016/J.JALLCOM.2013.05.183.
[67] S. Jiao, K. Zhang, S. Bai, H. Li, S. Gao, H. Li, J. Wang, Q. Yu, F. Guo, L. Zhao, Electrochim. Acta. 111: 64 (2013). https://doi.org/10.1016/J.ELECTACTA.2013.08.050.
[68] H. Köse, Ş. Karaal, A.O. AydIn, H. Akbulut, J. Power Sources. 295: 235 (2015). https://doi.org/10.1016/J.JPOWSOUR.2015.06.135.
[69] F. Davar, M. Salavati-Niasari, J. Alloys Compd. 509: 2487 (2011). https://doi.org/10.1016/J.JALLCOM.2010.11.058.
[70] M.A. Ciciliati, M.F. Silva, D.M. Fernandes, M.A.C. De Melo, A.A.W. Hechenleitner, E.A.G. Pineda, Mater. Lett. 159: 84 (2015). https://doi.org/10.1016/J.MATLET.2015.06.023.
[71] M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Chemosphere. 91: 1604 (2013). https://doi.org/10.1016/J.CHEMOSPHERE.2012.12.055.
[72] C. Wang, Z. Chen, H. Hu, D. Zhang, Phys. B Condens. Matter. 404: 4075 (2009). https://doi.org/10.1016/J.PHYSB.2009.07.165.
[73] P. Hu, N. Han, D. Zhang, J.C. Ho, Y. Chen, Sensors Actuators B Chem. 169: 74 (2012). https://doi.org/10.1016/J.SNB.2012.03.035.
[74] C.H. Lee, D.W. Kim, Thin Solid Films. 546: 38 (2013). https://doi.org/10.1016/J.TSF.2013.05.029.
[75] N. Zhang, R. Yi, R. Shi, G. Gao, G. Chen, X. Liu, Mater. Lett. 63: 496 (2009). https://doi.org/10.1016/J.MATLET.2008.11.046.
[76] W. Ouyang, J. Zhu, Mater. Lett. 62: 2557 (2008). https://doi.org/10.1016/J.MATLET.2007.12.051.
[77] X. Ma, J. Zhang, J. Lu, Z. Ye, Appl. Surf. Sci. 257: 1310 (2010). https://doi.org/10.1016/J.APSUSC.2010.08.057.
[78] D.Y. Jiang, J.X. Zhao, M. Zhao, Q.C. Liang, S. Gao, J.M. Qin, Y.J. Zhao, A. Li, J. Alloys Compd. 532: 31 (2012). https://doi.org/10.1016/J.JALLCOM.2012.03.114.
[79] H. Tang, L. Zhu, Z. Ye, H. He, Y. Zhang, M. Zhi, F. Yang, Z. Yang, B. Zhao, Mater. Lett. 61: 1170 (2007). https://doi.org/10.1016/J.MATLET.2006.06.085.
[80] A. Sobczyk-Guzenda, B. Pietrzyk, H. Szymanowski, M. Gazicki-Lipman, W. Jakubowski, Ceram. Int. 39: 2787 (2013). https://doi.org/10.1016/J.CERAMINT.2012.09.046.
[81] H. Morkoç, Ü. Özgür, Zinc Oxide. 1 (2009). https://doi.org/10.1002/9783527623945.CH1.
[82] Ü.D. Özgür, V. Avrutin, H. Morkoç, Mol. Beam Ep. 369 (2013). https://doi.org/10.1016/B978-0-12-387839-7.00016-6.
[83] N. Boukos, C. Chandrinou, A. Travlos, Thin Solid Films. 520: 4654 (2012). https://doi.org/10.1016/J.TSF.2011.10.138.
[84] S.B. Zhang, S.H. Wei, A. Zunger, Phys. Rev. B. 63: 075205 (2001). https://doi.org/10.1103/PhysRevB.63.075205.
[85] T.C. Collins, R.J. Hauenstein, Zinc Oxide Mater. Electron. Optoelectron. Device Appl. 1 (2011). https://doi.org/10.1002/9781119991038.CH1.
[86] L. Duan, W. Zhang, X. Yu, Z. Jiang, L. Luan, Y. Chen, D. Li, Appl. Surf. Sci. 258: 10064 (2012). https://doi.org/10.1016/J.APSUSC.2012.06.075.
[87] R.A. Mereu, A. Mesaros, M. Vasilescu, M. Popa, M.S. Gabor, L. Ciontea, T. Petrisor, Ceram. Int. 39: 5535 (2013). https://doi.org/10.1016/J.CERAMINT.2012.12.067.
[88] C.B. Ong, L.Y. Ng, A.W. Mohammad, Renew. Sustain. Energy Rev. 81: 536 (2018). https://doi.org/10.1016/J.RSER.2017.08.020.
[89] Z. Yu, L.C. Yin, Y. Xie, G. Liu, X. Ma, H.M. Cheng, J. Colloid Interface Sci. 400: 18 (2013). https://doi.org/10.1016/J.JCIS.2013.02.046.
[90] C. Di Valentin, G. Pacchioni, Catal. Today. 206: 12 (2013). https://doi.org/10.1016/J.CATTOD.2011.11.030.
[91] O. Bechambi, S. Sayadi, W. Najjar, J. Ind. Eng. Chem. 32: 201 (2015). https://doi.org/10.1016/J.JIEC.2015.08.017.
[92] B.P. Nenavathu, A.V.R. Krishna Rao, A. Goyal, A. Kapoor, R.K. Dutta, Appl. Catal. A Gen. 459: 106 (2013). https://doi.org/10.1016/J.APCATA.2013.04.001.
[93] S.M. Hosseini, I.A. Sarsari, P. Kameli, H. Salamati, J. Alloys Compd. 640: 408 (2015). https://doi.org/10.1016/J.JALLCOM.2015.03.136.
[94] A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Nano-Micro Lett. 7: 219 (2015). https://doi.org/10.1007/S40820-015-0040-X/TABLES/2.
[95] M. Rezaei, A. Habibi-Yangjeh, Appl. Surf. Sci. 265: 591 (2013). https://doi.org/10.1016/J.APSUSC.2012.11.053.
[96] O. Yayapao, T. Thongtem, A. Phuruangrat, S. Thongtem, Mater. Lett. 90: 83 (2013). https://doi.org/10.1016/J.MATLET.2012.09.027.
[97] O. Yayapao, S. Thongtem, A. Phuruangrat, T. Thongtem, Ceram. Int. 39: S563 (2013). https://doi.org/10.1016/J.CERAMINT.2012.10.136.
[98] S. Yun, J. Lee, J. Chung, S. Lim, J. Phys. Chem. Solids. 71: 1724 (2010). https://doi.org/10.1016/J.JPCS.2010.08.020.
[99] A. Phuruangrat, S. Kongnuanyai, T. Thongtem, S. Thongtem, Mater. Lett. 91: 179 (2013). https://doi.org/10.1016/J.MATLET.2012.09.091.
[100] D. Zhu, T. Hu, Y. Zhao, W. Zang, L. Xing, X. Xue, Sensors Actuators B Chem. 213: 382 (2015). https://doi.org/10.1016/J.SNB.2015.02.119.
[101] R. Wang, J.H. Xin, Y. Yang, H. Liu, L. Xu, J. Hu, Appl. Surf. Sci. 227: 312 (2004). https://doi.org/10.1016/J.APSUSC.2003.12.012.
[102] R. Saleh, N.F. Djaja, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 130: 581 (2014). https://doi.org/10.1016/J.SAA.2014.03.089.
[103] K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Water Res. 88: 428 (2016). https://doi.org/10.1016/J.WATRES.2015.09.045.
[104] P. Raizada, A. Sudhaik, P. Singh, Mater. Sci. Energy Technol. 2: 509 (2019). https://doi.org/10.1016/J.MSET.2019.04.007.
[105] A.A. Yaqoob, N.H.B.M. Noor, A. Serrà, M.N.M. Ibrahim, Nanomater. 2020, Vol. 10, Page 932. 10: 932 (2020). https://doi.org/10.3390/NANO10050932.
[106] S. Bai, X. Shen, RSC Adv. 2: 64 (2011). https://doi.org/10.1039/C1RA00260K.
[107] X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41: 666 (2012). https://doi.org/10.1039/C1CS15078B.
[108] M. Khan, M.N. Tahir, S.F. Adil, H.U. Khan, M.R.H. Siddiqui, A.A. Al-Warthan, W. Tremel, J. Mater. Chem. A. 3: 18753 (2015). https://doi.org/10.1039/C5TA02240A.
[109] K. Lü, G.X. Zhao, X.K. Wang, Chinese Sci. Bull. 2012 5711. 57: 1223 (2012). https://doi.org/10.1007/S11434-012-4986-5.
[110] T. Lv, L. Pan, X. Liu, T. Lu, G. Zhu, Z. Sun, J. Alloys Compd. 509: 10086 (2011). https://doi.org/10.1016/J.JALLCOM.2011.08.045.
[111] B. Li, T. Liu, Y. Wang, Z. Wang, J. Colloid Interface Sci. 377: 114 (2012). https://doi.org/10.1016/J.JCIS.2012.03.060.
[112] R. Atchudan, T.N.J.I. Edison, S. Perumal, M. Shanmugam, Y.R. Lee, J. Photochem. Photobiol. A Chem. 337: 100 (2017). https://doi.org/10.1016/J.JPHOTOCHEM.2017.01.021.
[113] M. Zargaran, M. Abdouss, H. Abdouss, A. Shokri, Desalin. Water Treat. 233: 331 (2021). https://doi.org/10.5004/dwt.2021.27547.
[114] M.R. Quirino, M.J.C. Oliveira, D. Keyson, G.L. Lucena, J.B.L. Oliveira, L. Gama, Mater. Res. Bull. 74: 124 (2016). https://doi.org/10.1016/J.MATERRESBULL.2015.10.027.
[115] X. Du, L. Li, W. Zhang, W. Chen, Y. Cui, Mater. Res. Bull. 61: 64 (2015). https://doi.org/10.1016/J.MATERRESBULL.2014.10.009.
[116] K. Wang, L. Jiang, X. Wu, G. Zhang, J. Mater. Chem. A. 8: 13241 (2020). https://doi.org/10.1039/D0TA01310B.
[117] Y. Wang, K. Wang, J. Wang, X. Wu, G. Zhang, J. Mater. Sci. Technol. 56: 236 (2020). https://doi.org/10.1016/J.JMST.2020.03.039.
[118] A.D. Ballarini, S.A. Bocanegra, A.A. Castro, S.R. De Miguel, O.A. Scelza, Catal. Lett. 2009 1293. 129: 293 (2009). https://doi.org/10.1007/S10562-008-9833-6.
[119] Y. Hao, X. Dong, X. Wang, S. Zhai, H. Ma, X. Zhang, J. Mater. Chem. A. 4: 8298 (2016). https://doi.org/10.1039/C6TA02371A.
[120] H. Zhang, L. Zhao, F. Geng, L.H. Guo, B. Wan, Y. Yang, Appl. Catal. B Environ. 180: 656 (2016). https://doi.org/10.1016/j.apcatb.2015.06.056.
[121] M. Aleksandrzak, W. Kukulka, E. Mijowska, Appl. Surf. Sci. 398: 56 (2017). https://doi.org/10.1016/J.APSUSC.2016.12.023.
[122] D. Zhang, C. Wang, Y. Liu, Q. Shi, W. Wang, Y. Zhai, J. Lumin. 132: 1529 (2012). https://doi.org/10.1016/J.JLUMIN.2012.01.025.
[123] S. Bagheri, N.M. Julkapli, Rev. Inorg. Chem. 36: 135 (2016). https://doi.org/10.1515/REVIC-2015-0014/XML.
[124] Y.L. Pang, S. Lim, H.C. Ong, W.T. Chong, Ceram. Int. 42: 9 (2016). https://doi.org/10.1016/J.CERAMINT.2015.08.144.
[125] H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, Water Res. 79: 128 (2015). https://doi.org/10.1016/J.WATRES.2015.04.038.
[126] J. Gómez-Pastora, S. Dominguez, E. Bringas, M.J. Rivero, I. Ortiz, D.D. Dionysiou, Chem. Eng. J. 310: 407 (2017). https://doi.org/10.1016/J.CEJ.2016.04.140.
[127] M. Shekofteh-Gohari, A. Habibi-Yangjeh, M. Abitorabi, A. Rouhi, 48: 806 (2018). https://doi.org/10.1080/10643389.2018.1487227.
[128] Y. Ge, Y. Xiang, Y. He, M. Ji, G. Song, New Pub Balaban. 57: 9837 (2015). https://doi.org/10.1080/19443994.2015.1032359.
[129] R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding, D.G. Wei, Mater. Res. Bull. 43: 2457 (2008). https://doi.org/10.1016/J.MATERRESBULL.2007.07.035.
[130] Y. Shaogui, Q. Xie, L. Xinyong, L. Yazi, C. Shuo, C. Guohua, Phys. Chem. Chem. Phys. 6: 659 (2004). https://doi.org/10.1039/B308336E.
[131] A. Hernández, L. Maya, E. Sánchez-Mora, E.M. Sánchez, J. Sol-Gel Sci. Technol. 2006 421. 42: 71 (2007). https://doi.org/10.1007/S10971-006-1521-7.
[132] V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, J. Photochem. Photobiol. C Photochem. Rev. 25: 1 (2015). https://doi.org/10.1016/J.JPHOTOCHEMREV.2015.08.003.
[133] N. Zhang, S. Xie, B. Weng, Y.J. Xu, J. Mater. Chem. A. 4: 18804 (2016). https://doi.org/10.1039/C6TA07845A.
[134] D. Chatterjee, S. Dasgupta, J. Photochem. Photobiol. C Photochem. Rev. 6: 186 (2005). https://doi.org/10.1016/J.JPHOTOCHEMREV.2005.09.001.
[135] M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Thin Solid Films. 605: 2 (2016). https://doi.org/10.1016/J.TSF.2015.12.064.
[136] G. Mamba, A. Mishra, D. Dionysiou, G. Lofrano, P. Falaras, S.C. Pillai, A.M.T. Silva, X. Quan, Catal. 2016, Vol. 6, Page 79. 6: 79 (2016). https://doi.org/10.3390/CATAL6060079.
[137] L. Prieto-Rodriguez, S. Miralles-Cuevas, I. Oller, A. Agüera, G.L. Puma, S. Malato, J. Hazard. Mater. 211–212: 131 (2012). https://doi.org/10.1016/J.JHAZMAT.2011.09.008.
[138] N.H.H. Hairom, A.W. Mohammad, A.A.H. Kadhum, Sep. Purif. Technol. 137: 74 (2014). https://doi.org/10.1016/J.SEPPUR.2014.09.027.
[139] V.C. Sarasidis, K. V. Plakas, S.I. Patsios, A.J. Karabelas, Chem. Eng. J. 239: 299 (2014). https://doi.org/10.1016/J.CEJ.2013.11.026.
[140] J. Han, Y. Liu, N. Singhal, L. Wang, W. Gao, Chem. Eng. J. 213: 150 (2012). https://doi.org/10.1016/J.CEJ.2012.09.066.
[141] S. Mozia, Sep. Purif. Technol. 73: 71 (2010). https://doi.org/10.1016/J.SEPPUR.2010.03.021.
[142] H. Song, J. Shao, Y. He, B. Liu, X. Zhong, J. Memb. Sci. 405–406: 48 (2012). https://doi.org/10.1016/J.MEMSCI.2012.02.063.
[143] X. Zhang, D.K. Wang, J.C. Diniz Da Costa, Catal. Today. 230: 47 (2014). https://doi.org/10.1016/J.CATTOD.2013.11.019.
[144] J. Kim, B. Van Der Bruggen, Environ. Pollut. 158: 2335 (2010). https://doi.org/10.1016/J.ENVPOL.2010.03.024.
[145] H. Song, J. Shao, J. Wang, X. Zhong, Desalination. 344: 412 (2014). https://doi.org/10.1016/J.DESAL.2014.04.012.
[146] B. Hu, J. Zhou, X.M. Wu, Int. J. Polym. Sci. 2013: (2013). https://doi.org/10.1155/2013/451398.