The Analysis of Coulomb Blockade in Fullerene Single Electron Transistor at Room Temperature
Subject Areas : Journal of NanoanalysisVahideh KhademHosseini 1 , Mohammad Taghi Ahmadi 2 , Saeid Afrang 3 , Razali Ismail 4
1 - Department of Electrical Engineering, Pardis of Urmia University, Urmia, Iran
2 - Department of Electrical Engineering, Pardis of Urmia University, Urmia, Iran|Nanotechnology Research Center, Nano electronic Research Group, Physics Department, Urmia University,
Urmia, Iran|Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
3 - Department of Electrical Engineering, Pardis of Urmia University, Urmia, Iran|Department of Electrical Engineering, Urmia University, Urmia, Iran
4 - Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
Keywords: Fullerene, Gate voltage, Coulomb blockade, Island length, Single Electron Transistor,
Abstract :
The Graphene based single electron transistor (SET) as a coulomb blockade device need to be explored .It is a unique device for high-speed operation in a nano scale regime. A single electron transfers via the coulomb barriers, but its movement may be prevented by coulomb blockade, so its effect is investigated in this research. The conditions of coulomb blockade and its controlling factors such as material, temperature, gate voltage and island length are investigated. At first, the coulomb blockade on fullerene SET as a nano transistor with new material is modeled and compared with experimental data of silicon SET. The comparison study indicates that the coulomb blockade range of fullerene SET is lower than the silicon one. On the other hand, the analysis demonstrates that, temperature and gate voltage play direct associations with zero current SET. In addition, island length and its material effect on coulomb blockade and desired current are achieved by decreasing the coulomb blockade range.
1. C. J. Gorter, Physical. 17, 777 (1951).
2. D. Averin and K. Likharev “Mesoscopic phenomena in solids”, 1st ed. B.L. Altshuler, P.A. Lee, W. Richard Webb, 1991, Vol .30, North-Holland, Amesterdam, 173.
3. T. A. Fulton and G. J. Dolan, Phys. Rev. Lett. , 59, 109 (1987).
4. L. Zhung, L. Guo and S. Y.Chou, Appl. Phys. Lett., 72, 1205 (1998).
5. AK. Geim and KS .Novoselov, Nature Mater, 6, 183, (2007).
6. T. Ihn, J Güttinger, F.Molitor, S.Schnez, E.Schurtenberger, A.Jacobsen, S.Hellmuller, T.Fery, S. Droscher, C. Stampfer and K. Ensslin , Mater. Today, 13, 3, (2010).
7. H.Park, J.Park, A.K.L.Lim, E.H.Anderson, A.P.Alivisatos and P.L.McEuen, Nat. 407, 57 (2000).
8. A. Hirsch, Nature Mater. 9, 868 (2010).
9. VV .Shorokhov,DE. Presnov, SV. Amitonov, YA .Pashkin and V.A. Krupenin, Nanoscale, 9, 613, (2017).
10. F. Wang, J. Fang ,Sh. Chang, Sh. Qin, X. Zhang and H. Xu,Physic Lett A ,381, 476 (2017).
11. W.A.Schoonveld, J.Wildeman, D.Fichou, P.A.Bobbert, B.J.van Wees and T.Klapwijk, Nat, 404, 977 (2000).
12. J.Park, A.N.Pasupathy, J.I.Goldsmith, C.Chang,Y. Yaish, J.R Petta, M.Rinkoski, J.P.Sethna, H.D. Abruña, P.L.McEuen and D.C.Ralph, Nat, 417, 722 (2002).
13. M.Ejrnaes, M.T.Savolainen b, M.J.Manscher and A.Mygind, Physica C, 372, 1353 (2002).
14. H. Zheng, M. Asbahi, S. Mukherjee, C. J Mathai, K. Gangopadhyay, J. K W Yang and Sh.Gangopadhyay, Nanotech. 26, 35 (2015).
15. F. Willy, Y. Darma, J. Phys.: Conference Series, 739 (2016).
16. J. Weis, “CFN Lectures on Functional Nanostructures” 1st ed. K.Busch, A.K.Powell, , C.Röthig, G.Schön and J. Weissmüller, 2005,Vol. 1,chap. 6, Springer Berlin Heidelberg, 87.
17. L.Sheela, N.B.Balamurugan, S.Sudha and J.Jasmine, JEET, 9, 1670 (2014).
18. E. Schrödinger,Physic Rev., 28, 1049 (1926).
19. R. Landauer Philos. Mag., 21, 863 (1970).
20. S. Datta, “Electronic Transport in Mesoscopic Systems”, 1st ed. H. Ahmed, 1995, Cambridge University Press, Cambridge, UK.
21. A.Z.Khan Durrani, “Single-electron Devices and Circuits in Silicon”, 1st ed. 2010, Chap. 3, Imperial College Press, London UK, 127.