Highly Sensitive Detection of H2S Molecules Using a TiO2-Supported Au Overlayer Based Nanosensors: A Van Der Waals Corrected DFT Study
Subject Areas : Journal of NanoanalysisAmirali Abbasi 1 , Jaber Jahanbin Sardroodi 2
1 - Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran| Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran|Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
2 - Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran| Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran|Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
Keywords: H2S, ensity functional theory, TiO2-supported Au nanoparticle, PDOS,
Abstract :
The adsorption of the H2S molecule on the undoped and N-doped TiO2 anatase supported Au nanoparticles were studied using density functional theory calculations. The adsorption of H2S on both Au and TiO2 sides of the nanoparticle was examined. On the TiO2 side, the fivefold coordinated titanium site was found to be the most favorable binding site, giving rise to the strong interaction of H2S with TiO2 supported Au overlayer. It was found that the central sulfur atom of the H2S molecule preferentially binds to the fivefold coordinated titanium sites via formation of strong chemical bonds. By substituting nitrogen atom into the oxygen vacancy of TiO2, significant changes in the bond lengths, bond angles and adsorption energies of the complex systems occur. The adsorption of H2S on the N-doped TiO2-supported Au nanoparticle is more favorable in energy than the adsorption on the pristine one, indicating the strong interaction of H2S with N-dopedTiO2-supported Au. Thus, the N-doped nanoparticle can be utilized as potentially efficient H2S gas detection device. The substantial overlaps between the projected density of states of the titanium and sulfur atoms indicate, the formation of a chemical bond between the nanoparticle and H2S molecule. This work not only proposes a theoretical basis for gas sensing behaviors of TiO2- supported Au overlayers, but also provides an effective strategy for the development of innovative sensor devices for H2S recognition in the environment.
1. A. Fujishima and K. Honda, Nature. 238, 37 (1972).
2. A. Fujishima, K. Hashimoto, and T. Watanabe, TiO2 Photocatalysis: Fundamentals and Applications, Bkc, Tokyo, (1999).
3. A. Abbasi and J.J. Sardroodi, Environ. Sci.: Nano. 3, 1153 (2016).
4. A. Abbasi and J.J. Sardroodi, Comp. Theor. Chem. 600, 2457 (2016).
5. A. Fujishima, X. Zhang and D.A. Tryk, Surf. Sci. Reports, 63, 515 (2008).
6. M. Batzilla, E.H. Morales, and U. Diebold, J. Chem. Phys. 339, 36 (2007).
7. S.L. Isley and R.L. Penn, J. Phys. Chem. B. 110, 15134 (2006).
8. A.K. Rumaiz, J.C. Woicik, E. Cockayne, H.Y. Lin, G.H. Jaffari, and S. I. Shah, J. Appl. Phys. Letts. 95, 262111 (2009).
9. R. Buonsanti, V. Grillo, E. Carlino, C. Giannini, T. Kipp, R. Cingolani and P.D. Cozzoli, J. Am. Chem. Soc. 130, 11223 (2008).
10. S. Cassaignon, M. Koelsch and J.P. Jolivet, J. Mater. Sci. 42, 6689 (2007).
11. A. Di Paola, M. Addamo, M. Bellardita, E. Cazzanelli and L. Palmisano, Thin Solid Films. 515 (7), 3527 (2007).
12. Y. Djaoued, R. Bruning, D. Bersani, P.P. Lottici and S. Badilescu, Mater. Lett. 58(21), 2618 (2004).
13. F. Iskandar, A.B.D. Nandiyanto, K. M.Yun, C.J. Hogan, K. Okuyama and P. Biswas, Adv. Mater. 19, 1408 (2007).
14. M. Kobayashi, V.V. Petrykin and M. Kakihana, Chem. Mater. 19, 5373 (2007).
15. J.G. Li, T. Ishigaki and X.D. Sun, J. Phys. Chem. C. 111, 4969 (2007).
16. M.A. Reddy, M.S. Kishore, V. Pralong, V. Caignaert and U.V. Varadaraju, Electrochemistry communications. 8(8), 1299 (2006).
17. Y. Shibata, H. Irie, M. Ohmori, A. Nakajima, T. Watanabe, and K. Hashimoto, Phys. Chem. Chem. Phys. 6, 1359 (2007).
18. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J. Catal. 115, 301 (1989).
19. M. Okumura, S. Nakamura, S. Tsubota, T. Nakamura, M. Azuma and M. Haruta, Catal. Lett. 51, 53 (1998).
20. T. Takei, T. Akita, I. Nakamura, T. Fujitani, M. Okumura, K. Okazaki, J.H. Huang, T. Ishida and M. Haruta, Adv. Catal. 55, 1 (2012).
21. M. Haruta, Catal. Today 36, 153 (1997).
22. P. Landon, P.J. Collier, A.J. Papworth, C.J. Kiely, and G.J. Hutchings, Chem. Commun. 18, 2058 (2002).
23. L.M. Molina and B. Hammer, Appl. Catal. A Gen. 291, 21 (2005).
24. M. Okumura, S. Tsubota and M. Haruta, J. Mol. Catal. A Chem. 199, 73 (2003).
25. N. Lopez and J.K. Norskov, J. Am. Chem. Soc. 124, 11262 (2002).
26. M.S. Chen and D.W. Goodman, Catal. Today. 111, 22 (2006).
27. H.H. Kung, M.C. Kung and C.K. Costello, J. Catal. 216, 425 (2003).
28. T.M. Hayashi, K. Tanaka and M. Haruta, J. Catal. 178, 566 (1998).
29. T. Salama, R. Ohnishi, T. Shido and M. Ichikawa, J. Catal. 162(2), 169 (1996).
30. J.A. Rodriguez, G. Liu, T. Jirsak, J. Hrbek, Z.P. Chang, J. Dvorak and A. Maiti, J. Am. Chem. Soc. 124, 5242 (2002).
31. M.S. Chen and D.W. Goodman, Science. 306(5694), 252 (2004).
32. F. Cosandey and T.E. Madey, Surf. Rev. Lett. 8, 73 (2001).
33. A. Vittadini and A. Selloni, J. Chem. Phys. 117, 353 (2002).
34. S. Chrétien and H. Metiu, J. Chem. Phys. 127, 084704 (2007).
35. J. Azamat, A. Khataee and S. W. Joo, Journal of Molecular graphics and Modelling, 53, 112 (2014).
36. J. Azamat, A. Khataee and S. W. Joo, RSC Advances, 5(32), 25097 (2015).
37. A. Abbasi and J.J. Sardroodi, Int. J. Bio-Inorg. Hybr. Nanomater., 5, 43 (2016).
38. A. Abbasi and J. J. Sardroodi, Int. J. Nano Dimens., 7, 349, (2016).
39. A. Abbasi and J. J. Sardroodi, J. Water Environ. Nanotechnol., 2, 52 (2017).
40. A. Abbasi, J.J. Sardroodi and A. R. Ebrahimzadeh, J. Water Environ. Nanotechnol., 1, 55 (2016).
41. A. Abbasi and J.J. Sardroodi, Int. J. Bio-Inorg. Hybr. Nanomater., 5, 105 (2016).
42. S.F. Peng and J.J. Ho, J. Phys. Chem. C. 114, 19489 (2010).
43. N.M. Galea, E.S. Kadantsev, and T. Ziegler, J. Phys. Chem. C. 113,193 (2009).
44. P. Hohenberg and W. Kohn, Phys. Rev., 136, B864 (1964).
45. W. Kohn and L. Sham, Phys. Rev., 140, A1133 (1965).
46. The code, OPENMX, pseudoatomic basis functions, and pseudopotentials are available on a web site ‘http://www. openmxsquare.org’.
47. T. Ozaki, J. Physical Review. B. 67, 155108 (2003).
48. T. Ozaki and H. Kino, Numerical atomic basis orbitals from H to Kr, Phys. Rev. B., 69, 195113 (2004)
49. J.P. Perdew and A. Zunger, Phys. Rev. B., 23, 5048 (1981).
50. A. Koklj, Comput. Mater. Sci., 28, 155 (2003).
51. S. Grimme, J. Comput. Chem., 27(15), 1787 (2006).
52. Web page at: http://rruff.geo.arizona.edu/AMS/amcsd.php.
53. R.W.G. Wyckoff. Crystal structures, Second edition. Interscience Publishers, USA, New York, (1963).
54. Y. Lei, H. Liu and W. Xiao, J. Modelling Simul. Mater. Sci. Eng., 18, 025004 (2010).
55. J. Liu, L. Dong, W. Guo, T. Liang and W. Lai, J. Phys. Chem. C. 117, 13037 (2013).
56. M. Lazzeri, A. Vittadini and A. Selloni, J. Phys. Rev. B. 63 155409 (2001).
57. C. Wu, M. Chen, A.A. Skelton, P.T. Cummings and T. Zheng, ACS Appl. Mat. Interfaces. 5, 2567 (2013).
58. A.A. Tamijani, A. Salam, and P. de-Lara-Castells, J. Phys. Chem. C. 120(32), 18126 (2016).
59. A.E. Reed, R.B. Weinstock and F. Weinhold, J. Chem. Phys. 83 (2), 735 (1985).