The Catalytic potential of biosynthesized silver nanoparticles from Malva Sylvestris and Beetroot extracts for methylene blue Reduction
Subject Areas : Journal of Nanoanalysis
سیما مهدیزاده
1
,
Nahid Ghasemi
2
*
1 - گروه شیمی، واحد آشتیان، دانشگاه آزاد اسلامی، آشتیان، ایران
2 - دانشگاه آزاد اسلامی واحد اراک
Keywords: Biosynthesis, Silver Nanoparticles, Malva Sylvestris, Beetroot, Catalytic degradation,
Abstract :
Silver nanoparticles (AgNPs) were effectively synthesized via a biosynthesis method using aqueous extracts of Malva Sylvestris (MS) and Beetroot (BR). The phenolic and flavonoid compounds in these extracts served as potent reducing and stabilizing agents. A comprehensive investigation was conducted to examine the effect of various synthesis parameters, including pH, extract volume, salt concentration, temperature, and time, on the formation of nanoparticles. The synthesized AgNPs were characterized using ultraviolet-visible (UV-Vis) spectrophotometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR). Both types of AgNPs exhibited a face-centered cubic crystal structure, with maximum absorbance peaks at 439 nm for AgNPs.BR and 434 nm for AgNPs.MS. Catalytic activity in reducing methylene blue was verified through surface plasmon resonance (SPR) spectroscopy. Kinetic data were analyzed using pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models. The enhanced reduction of methylene blue (MB) in the presence of 0.008 g AgNPs.BR and 0.005 g AgNPs.MS, with rate constants of 0.024 min⁻¹ and 0.097 min⁻¹ respectively, demonstrated the significant catalytic potential of these nanoparticles.
1. Ali I, Gupta VK. Advances in water treatment by adsorption technology. Nat. Protoc. 2006;1(8):2661-7. https://doi.org/10.1038/nprot.2006.370.
2. Forgacs E, Cserháti T, Oros G. Removal of synthetic dyes from wastewaters: a review. Environ. Int. 2004;30(7):953-71. https://doi.org/10.1016/j.envint.2004.02.001.
3. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009;27(1):76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002.
4. Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 2016;7(1):17-28. https://doi.org/10.1016/j.jare.2015.02.007.
5. Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012;2(1):32. https://doi.org/10.1186/2228-5326-2-32.
6. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 2014;9(6):385-406.
7. Ghaedi M, Yousefinejad M, Safarpoor M, Zare-Khafri H, Purkait MK. Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. J Ind Eng Chem. 2015;31:167-172. https://doi.org/10.1016/j.jiec.2015.06.020
8. Luna C, Chávez VHG, Barriga-Castro ED, Núñez NO, Mendoza-Reséndez R. Biosynthesis of silver fine particles and particles decorated with nanoparticles using the extract of Illicium verum (star anise) seeds. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015;141:43-50. http://dx.doi.org/10.1016/j.saa.2014.12.076.
9. Ashokkumar S, Ravi S, Velmurugan S. Green synthesis of silver nanoparticles from Gloriosa superba L. leaf extract and their catalytic activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013;115:388- 92. http://dx.doi.org/10.1016/j.saa.2013.06.050.
10. Saravanakumar A, Ganesh M, Jayaprakash J, Jang HT. Biosynthesis of silver nanoparticles using Cassia tora leaf extract and its antioxidant and antibacterial activities. J. Ind. Eng. Chem. 2015;28:277-81. http://dx.doi.org/10.1016/j.jiec.2015.03.003.
11. Allafchian AR, Mirahmadi-Zare SZ, Jalali SAH, Hashemi SS, Vahabi MR. Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. J Nanostruct Chem. 2016;6:129-35. https://doi.org/10.1007/s40097-016-0187-0.
12. Sedaghat S, Agbolag AE, Bagheriyan S. Biosynthesis of silver nanoparticles using pennyroyal water extract as a green route. J Nanostruct Chem. 2016;6:25-7. https://doi.org/10.1007/s40097-015-0176-8.
13. Nasiri J, Rahimi M, Hamezadeh Z, Motamedi E, Naghavi MR. Fulfillment of green chemistry for synthesis of silver nanoparticles using root and leaf extracts of Ferula persica: Solid-state route vs. solution-phase method. J. Clean. Prod. 2018;192:514-30. https://doi.org/10.1016/j.jclepro.2018.04.218.
14. Ajitha B, Reddy YAK, Reddy PS. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Mater. Sci. Eng. C. 2015;49:373-81. https://doi.org/10.1016/j.msec.2015.01.035.
15. Mo YY, Tang YK, Wang SY, Lin JM, Zhang HB, Luo DY. Green synthesis of silver nanoparticles using eucalyptus leaf extract. Mater. Lett. 2015;144:165-7. https://doi.org/10.1016/j.matlet.2015.01.004.
16. Zayed MF, Eisa WH, Shabaka AA. Malva parviflora extract assisted green synthesis of silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012;98:423-8. https://doi.org/10.1016/j.saa.2012.08.072.
17. Pattanayak S, Mollick M, Maity D, Chakraborty S, Dash SK, Chattopadhyay S, Roy S, Chattopadhyay D, Chakraborty M. Butea monosperma bark extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications. J. Saudi Chem. Soc. 2017;21(6):673-84. https://doi.org/10.1016/j.jscs.2015.11.004.
18. Ramar M, Manikandan B, Raman T, Arunagirinathan K, Prabhu NM, Basu MJ, Perumal M, Palanisamy S, Munusamy A. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015;138:120-9. https://doi.org/10.1016/j.saa.2014.10.043.
19. Moond M, Singh S, Sangwan S, Devi P, Beniwal A, Rani J, Kumari A, Rani S. Biosynthesis of Silver Nanoparticles Utilizing Leaf Extract of Trigonella foenum-graecum L. for Catalytic Dyes Degradation and Colorimetric Sensing of Fe3+/Hg2+. Molecules. 2023;28(3):951. https://doi.org/10.3390/molecules28030951.
20. Samari F, Salehipoor H, Eftekhar E, Yousefinejad S. Low-temperature biosynthesis of silver nanoparticles using mango leaf extract: catalytic effect, antioxidant properties, anticancer activity and application for colorimetric sensing. New J. Chem. 2018;42:15905-16. https://doi.org/10.1039/C8NJ03156H.
21. Sharmin S, Islam M, Kanti Saha B, Ahmed F, Maitra B, Rasel M, Quaisaar N, Rabbi M. Evaluation of antibacterial activity, in-vitro cytotoxicity and catalytic activity of biologically synthesized silver nanoparticles using leaf extracts of Leea macrophylla. Heliyon. 2023;9(1):e20810. https://doi.org/10.1016/j.heliyon.2023.e20810.
22. Sooraj MP, Nair AS, Vineetha D. Sunlight-mediated green synthesis of silver nanoparticles using Sida retusa leaf extract and assessment of its antimicrobial and catalytic activities. Chem. Pap. 2021;75(1):351-63. https://doi.org/10.1007/s11696-020-01304-0.
23. Raikos V, McDonagh A, Ranawana V, Duthie G. Processed beetroot (Beta vulgaris L.) as a natural antioxidant in mayonnaise: Effects on physical stability, texture and sensory attributes. Food Sci. Hum. Wellness. 2016;5(4):191-8. https://doi.org/10.1016/j.fshw.2016.10.002.
24. Carrillo C, Wilches-Perez D, Hallmann E, Kazimierczak R, Rembiałkowska E. Organic versus conventional beetroot. Bioactive compounds and antioxidant properties. LWT. 2019;116:108552. https://doi.org/10.1016/j.lwt.2019.108552.
25. Mehdizadeh S, Ghasemi N, Ramezani M. The synthesis of silver nanoparticles using Beetroot extract and its antibacterial and catalytic activity. Eurasian Chem. Commun. 2019;1(6):545-58. https://doi.org/10.22034/ECC.2019.1960614.1004.
26. Mehdizadeh S, Ghasemi N, Ramezani M, Mahanpoor K. Biosynthesis of Silver Nanoparticles Using Malva Sylvestris Flower Extract and Its Antibacterial and Catalytic Activity. Chem. Methodol. 2021;5(4): 356-366. https://doi.org/10.22034/chemm.2021.132490 .
27. Mosaviniya M, Kikhavani T, Tanzifi M, Tavakkoli-Yaraki M, Tajbakhsh P, Lajevardi A. Facile green synthesis of silver nanoparticles using Crocus Haussknechtii Bois bulb extract: Catalytic activity and antibacterial properties. Colloid Interface Sci. Commun. 2019;33:100211. https://doi.org/10.1016/j.colcom.2019.100211.
28. Nouri A, Yaraki MT, Lajevardi A, Rezaei Z, Ghorbanpour M, Tanzifi M. Ultrasonic-assisted green synthesis of silver nanoparticles using Mentha aquatica leaf extract for enhanced antibacterial properties and catalytic activity. Colloid Interface Sci. Commun. 2020;35:100252. https://doi.org/10.1016/j.colcom.2020.100252.
29. Chen J, Wang J, Zhang X, Jin Y. Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater. Chem. Phys. 2008;108:421-4. https://doi.org/10.1016/j.matchemphys.2007.10.019.
30. Kazemi S, Hosseingholian A, Gohari SD, Feirahi F, Moammeri F, Mesbahian G, Moghaddam ZS, Ren Q. Recent advances in green synthesized nanoparticles: From production to application. Mater. Today Sustain. 2023;24:100500. https://doi.org/10.1016/j.mtsust.2023.100500.
31. Zeng J, Xiong X, Hu F, Li J, Li P. Dialdehyde Cellulose Solution as Reducing Agent: Preparation of Uniform Silver Nanoparticles and In Situ Synthesis of Antibacterial Composite Films with High Barrier Properties. Molecules. 2023;28(7):2956. https://doi.org/10.3390/molecules28072956.
32. Ghasemi S, Dabirian S, Kariminejad F, et al. Process optimization for green synthesis of silver nanoparticles using Rubus discolor leaves extract and its biological activities against multi-drug resistant bacteria and cancer cells. Sci. Rep. 2024;14:4130. https://doi.org/10.1038/s41598-024-54702-9.
33. Hamedi S, Shojaosadati SA. Rapid and green synthesis of silver nanoparticles using Diospyros lotus extract: Evaluation of their biological and catalytic activities. Polyhedron. 2019;171:172-80. https://doi.org/10.1016/j.poly.2019.07.010.
34. Aadil KR, Pandey N, Mussatto SI, Jha H. Green synthesis of silver nanoparticles using acacia lignin, their cytotoxicity, catalytic, metal ion sensing capability and antibacterial activity. J. Environ. Chem. Eng. 2019;7:103296. https://doi.org/10.1016/j.jece.2019.103296.
35. Ghaedi M, Yousefinejad M, Safarpoor M, Zare-Khafri H, Purkait MK. Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. J. Ind. Eng. Chem. 2015;31:167-72. http://dx.doi.org/10.1016/j.jiec.2015.06.020.
36. Kahraman HT. Synthesis of silver nanoparticles using Alchemilla vulgaris and Helichrysum arenarium for methylene blue and 4-nitrophenol degradation and antibacterial applications. Biomass Convers. Bioref. 2024;14:13479-90. https://doi.org/10.1007/s13399-024-05314-w.
37. Wang X, Fang X, Liu X, Lyu Y, Ma L, Fu J. Spike nanoparticles: From design to biomedical applications. Next Mater. 2024;2:100080. https://doi.org/10.1016/j.nxmate.2023.100080.
38. Ganguly S, Mondal S, Das P, Bhawal P, Das TK, Bose M, Choudhary S, Gangopadhyay S, Das AK, Das NC. Natural saponin stabilized nano-catalyst as efficient dye-degradation catalyst. Nano-Struct. Nano-Obj. 2018;16:86-95. https://doi.org/10.1016/j.nanoso.2018.05.002.
39. Ghasemi M, Javadian H, Ghasemi N, Agarwal S, Gupta VK. Microporous nanocrystalline NaA zeolite prepared by microwave assisted hydrothermal method and determination of kinetic, isotherm and thermodynamic parameters of the batch sorption of Ni (II). J. Mol. Liq. 2016;215:161-9. http://dx.doi.org/10.1016/j.molliq.2015.12.038.
40. Ghasemi M, Naushad M, Ghasemi N, Khosravi-Fard Y. Adsorption of Pb(II) from aqueous solution using new adsorbents prepared from agricultural waste: Adsorption isotherm and kinetic studies. J. Ind. Eng. Chem. 2014;20:2193-9. http://dx.doi.org/10.1016/j.jiec.2013.09.050.