پپتیدهای ضدمیکروبی آرکیاهای نمک دوست: خواص و کاربرد هالوسین
محورهای موضوعی :
زیست فناوری میکروبی
سهیلا عباسی
1
,
گیتی امتیازی
2
*
1 - دانشگاه اصفهان
2 - دانشگاه اصفهان دانشکده علوم و فناوری های زیستی گروه سلولی مولکولی و میکروبیولوژی
تاریخ دریافت : 1401/01/20
تاریخ پذیرش : 1401/05/20
تاریخ انتشار : 1401/06/15
کلید واژه:
پپتیدهای ضد میکروبی(AMPs),
اکسترموفیل,
آرکئوسین,
هالوسین,
هالوآرکیا,
چکیده مقاله :
بروز بالای باکتریهای مقاوم به دارو، در حال حاضر نگرانی عمده سلامت جهانی است و خواستار جستجوی فوری ساز و کارهای ضد میکروبی جدید است. بنابراین عوامل جدید و پپتیدهای ضد میکروبی با یک عملکرد جدید نیاز است. هالوسینها که توسط هالوآرکیاها سنتز میشوند، معمولاً مقاوم به شرایط سخت هستند و این ویژگیها به آنها توانمندی زیادی در زمینه زیست فناوری داده است. در مطالعه حاضر از بانکهای اطلاعاتی مختلف شامل Elsevier databases،Pubmed ،Google Scholar ،Scopus ، MEDLIB،SID ،Magiran ،Iranmedex ، Irandoc استفاده شده و پپتیدهای ضد میکروبی حاصل از آرکیاهای مطرح شده در مقالات منتشر شده در سالهای 1992 تا 2021 استخراج ومطالعه مروری بر روی آنها انجام گرفته است. دلیل استفاده از ترکیبات ضد میکروبی آرکیاها، میتواند ناشی از مکانیسم عمل و دقت در شناسایی مولکول هدف باشد. اما تولید هالوسین خالص به دلیل تکنیکهای مشکل برای کشت آرکیا و خالص سازی ترکیبات فعال تولید شده بسیار مشکل است. به طور کلی، پپتیدهای ضد میکروبی اهدافی جذاب برای توسعه دارو هستند. از کاربردهای مهم هالوسینها میتوان به فعالیت ضد میکروبی، نگهدارنده برای محصولات غذایی شور، حفظ پوست دباغی شده، جلوگیری از صدمات قلبی، فعالیت ضد سرطانی و به عنوان ابزار جذب DNA اشاره کرد.
چکیده انگلیسی:
The high incidence of drug-resistant bacteria is currently a major global health concern, which, of course, calls for an immediate search for new antimicrobial mechanisms. Halocins synthesized by haloarchaea are usually stable at extremophile conditions and these features have given them great potential in the field of biotechnology. In the present study, literature search was performed based on search of antimicrobial peptides derived from archaea, in several online research tools, such as Pubmed Medline, Scopus, Google scholar, Elsevier databases, Irandoc, Iranmedex, Magiran, SID and MEDLIB limited to the articles published between 1992 to 2021.The reason for the use of archaea antimicrobial compounds can be due to the mechanism of action and accuracy in identifying the target molecule, which has been proven in studies. But the production of pure halocin is very difficult due to the difficult techniques for culturing archaea and purification the active compounds produced.Antimicrobial peptides are attractive targets for drug development. Among the important uses of halocins, we can mention antimicrobial activity, preservative for salty food products, protection of tanned skin, prevention of heart damage, anti-cancer activity and as a tool for DNA absorption.
منابع و مأخذ:
Haney EF, Brito-Sánchez Y, Trimble MJ, Mansour SC, Cherkasov A, Hancock RE. Computer-aided discovery of peptides that specifically attack bacterial biofilms. Scientific reports. 2018;8(1):1-12.
Chandrangsu P, Rensing C, Helmann JD. Metal homeostasis and resistance in bacteria. Nat Rev Microbiol. 2017;15(6):338-50.
Wong DL, Merrifield-MacRae ME, Stillman MJ. Lead (II) binding in metallothioneins. Lead: Its Effects on Environment and Health. 2017;17:241.
Lee T-H, N Hall K, Aguilar M-I. Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure. Current topics in medicinal chemistry. 2016;16(1): 25-39.
Roscetto E, Contursi P, Vollaro A, Fusco S, Notomista E, Catania MR. Antifungal and anti-biofilm activity of the first cryptic antimicrobial peptide from an archaeal protein against Candida spp. clinical isolates. Scientific reports. 2018;8(1):1-11.
Wiradharma N, Sng MY, Khan M, Ong ZY, Yang YY. Rationally designed α‐helical broad‐spectrum antimicrobial peptides with idealized facial amphiphilicity. Macromolecular rapid communications. 2013;34(1):74-80.
Fjell CD, Hiss JA, Hancock RE, Schneider G. Designing antimicrobial peptides: form follows function. Nature reviews Drug discovery. 2012;11(1):37-51.
Candido ES, Cardoso MH, Chan LY, Torres MD, Oshiro KG, Porto WF, et al. Short cationic peptide derived from Archaea with dual antibacterial properties and anti-infective potential. ACS infectious diseases. 2019;5(7):1081-6.
Atanasova NS, Pietilä MK, Oksanen HM. Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier. MicrobiologyOpen. 2013;2(5):811-25.
Kumar V, Singh B, van Belkum MJ, Diep DB, Chikindas ML, Ermakov AM, et al. Halocins, natural antimicrobials of Archaea: Exotic or special or both? Biotechnology Advances. 2021;53:107834.
Corral P, Amoozegar MA, Ventosa A. Halophiles and their biomolecules: Recent advances and future applications in biomedicine. Marine drugs. 2020;18(1):33.
Arahal DR, Oren A, Ventosa A. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Halobacteria and Subcommittee on the taxonomy of Halomonadaceae. Minutes of the joint open meeting, 11 July 2017, Valencia, Spain. International Journal of Systematic and Evolutionary Microbiology. 2017;67(10):4279.
Torregrosa-Crespo J, Pire Galiana C, Martínez-Espinosa RM. Biocompounds from Haloarchaea and their uses in biotechnology. Archaea-New Biocatalysts, Novel Pharmaceuticals and Various Biotechnological Applications InTech. 2017:63-82.
Seckbach J, Oren A, Stan-Lotter H. Polyextremophiles: life under multiple forms of stress: Springer Science & Business Media; 2013.
Bowers KJ, Wiegel J. Temperature and pH optima of extremely halophilic archaea: a mini-review. Extremophiles. 2011;15(2):119-28.
Zaghian S, Emtiazi G, Shokri D. A Bacteriocin with Broad Antimicrobial Activity Produced by Newly Isolated Nitrogen-Fixing Bacillus Strains. Journal of Isfahan Medical School. 2013;30(218).
Ghoul M, Mitri S. The ecology and evolution of microbial competition. Trends in microbiology. 2016;24(10):833-45.
Besse A, Peduzzi J, Rebuffat S, Carre-Mlouka A. Antimicrobial peptides and proteins in the face of extremes: Lessons from archaeocins. Biochimie. 2015;118:344-55.
Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural product reports. 2013;30(1):108-60.
Jenab A, Roghanian R, Emtiazi G. Encapsulation of platelet in kefiran polymer and detection of bioavailability of immobilized platelet in probiotic kefiran as a new drug for surface bleeding. Journal of Medical Bacteriology. 2015;4(3-4):45-55.
Motahari P, Amini-Bayat Z, Mirdamadi S. Bacteriocins: New generation of antimicrobial peptides. The Journal of Qazvin University of Medical Sciences. 2017;21(2):79-94.
Mirhosseini M, Emtiazi G. Optimisation of enterocin A production on a whey-based substrate. World Appl Sci J. 2011;14(10):1493-9.
Vassiliadis G, Destoumieux-Garzón D, Peduzzi J. Class II microcins. Prokaryotic antimicrobial peptides: Springer; 2011. p. 309-32.
Cotter PD. An ‘U pp'‐turn in bacteriocin receptor identification. Molecular microbiology. 2014;92(6):1159-63.
Pizzo E, Cafaro V, Di Donato A, Notomista E. Cryptic antimicrobial peptides: identification methods and current knowledge of their immunomodulatory properties. Current pharmaceutical design. 2018;24(10):1054-66.
Pane K, Durante L, Crescenzi O, Cafaro V, Pizzo E, Varcamonti M, et al. Antimicrobial potency of cationic antimicrobial peptides can be predicted from their amino acid composition: Application to the detection of “cryptic” antimicrobial peptides. Journal of theoretical biology. 2017;419:254-65.
Swidergall M, Ernst JF. Interplay between Candida albicans and the antimicrobial peptide armory. Eukaryotic cell. 2014;13(8):950-7.
Zaghian S, Shokri D, Emtiazi G. Co-production of a UV-stable bacteriocin-like inhibitory substance (BLIS) and indole-3-acetic acid hormone (IAA) and their optimization by Taguchi design in Bacillus pumilus. Annals of microbiology. 2012;62(3):1189-97.
Meena KR, Kanwar SS. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. BioMed research international. 2015;2015.
Fanaei M, Emtiazi G. Microbial assisted (Bacillus mojavensis) production of bio-surfactant lipopeptide with potential pharmaceutical applications and its characterization by MALDI-TOF-MS analysis. Journal of Molecular Liquids. 2018;268:707-14.
Mirani ZA, Khan MN, Siddiqui A, Khan F, Aziz M, Naz S, et al. Ascorbic acid augments colony spreading by reducing biofilm formation of methicillin-resistant Staphylococcus aureus. Iranian journal of basic medical sciences. 2018;21(2):175.
Mishra B, Lushnikova T, Wang G. Small lipopeptides possess anti-biofilm capability comparable to daptomycin and vancomycin. RSC advances. 2015;5(73):59758-69.
Alajlani M, Shiekh A, Hasnain S, Brantner A. Purification of bioactive lipopeptides produced by Bacillus subtilis strain BIA. Chromatographia. 2016;79(21):1527-32.
Etemadzadeh SS, Emtiazi G. In vitro identification of antimicrobial hemolytic lipopeptide from halotolerant Bacillus by Zymogram, FTIR, and GC mass analysis. Iranian Journal of Basic Medical Sciences. 2021;24(5):666.
Ghoreishi FS, Roghanian R, Emtiazi G. Inhibition of quorum sensing-controlled virulence factors with natural substances and novel protease, obtained from Halobacillus karajensis. Microbial Pathogenesis. 2020;149:104555.
Dehghanifar S, Keyhanfar M, Emtiazi G. Production and partial purification of thermostable bacteriocins from Bacillus pumilus ZED17 and DFAR8 strains with antifungal activity. Molecular Biology Research Communications. 2019;8(1):41.
Ghanmi F, Carré-Mlouka A, Zarai Z, Mejdoub H, Peduzzi J, Maalej S, et al. The extremely halophilic archaeon Halobacterium salinarum ETD5 from the solar saltern of Sfax (Tunisia) produces multiple halocins. Research in microbiology. 2020;171(2):80-90.
Rodriguez-Valera F, editor Biotechnological potential of halobacteria. Biochemical Society Symposium; 1992.
Tadeo X, López-Méndez B, Trigueros T, Laín A, Castano D, Millet O. Structural basis for the aminoacid composition of proteins from halophilic archea. PLoS biology. 2009;7(12):e1000257.
Matarredona L, Camacho M, Zafrilla B, Bonete M-J, Esclapez J. The role of stress proteins in Haloarchaea and their adaptive response to environmental shifts. Biomolecules. 2020;10(10):1390.
Price LB, Shand RF. Halocin S8: a 36-amino-acid microhalocin from the haloarchaeal strain S8a. Journal of bacteriology. 2000;182(17):4951-8.
Abbasi S, Emtiazi G. MALDI‐TOF analysis of a novel extremophile peptide purified from Halarchaeum acidiphilum ASDL78 with antiarchaeal and antibacterial activities. Journal of Basic Microbiology. 2020;60(11-12):920-30.
Gabrielsen C, Brede DA, Nes IF, Diep DB. Circular bacteriocins: biosynthesis and mode of action. Applied and environmental microbiology. 2014;80(22):6854-62.
Platas G, Meseguer I, Amils R. Purification and biological characterization of halocin H1 from Haloferax mediterranei M2a. International Microbiology. 2002;5(1):15-9.
O'connor E, Shand R. Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. Journal of Industrial Microbiology and Biotechnology. 2002;28(1):23-31.
Meseguer I, Torreblanca M, Konishi T. Specific Inhibition of the Halobacterial Na+/H+ Antiporter by Halocin H6 (*). Journal of Biological Chemistry. 1995;270(12):6450-5.
Lequerica JL, O’Connor J, Such L, Alberola A, Meseguer I, Dolz M, et al. A halocin acting on Na+/H+ exchanger of Haloarchaea as a new type of inhibitor in NHE of mammals. Journal of physiology and biochemistry. 2006;62(4):253-62.
Paulino C, Wöhlert D, Kapotova E, Yildiz Ö, Kühlbrandt W. Structure and transport mechanism of the sodium/proton antiporter MjNhaP1. Elife. 2014;3:e03583.
Haseltine C, Hill T, Montalvo-Rodriguez R, Kemper SK, Shand RF, Blum P. Secreted euryarchaeal microhalocins kill hyperthermophilic crenarchaea. Journal of bacteriology. 2001;183(1):287-91.
Shand RF, Leyva KJ. Peptide and protein antibiotics from the domain Archaea: halocins and sulfolobicins. Bacteriocins: Springer; 2007. p. 93-109.
Meknaci R, Lopes P, Servy C, Le Caer J-P, Andrieu J-P, Hacène H, et al. Agar-supported cultivation of Halorubrum sp. SSR, and production of halocin C8 on the scale-up prototype Platotex. Extremophiles. 2014;18(6):1049-55.
Imadalou-Idres N, Carré-Mlouka A, Vandervennet M, Yahiaoui H, Peduzzi J, Rebuffat S. Diversity and antimicrobial activity of cultivable halophilic archaea from three Algerian sites. Journal of Life Sciences. 2013;7(10):1057.
Sun C, Li Y, Mei S, Lu Q, Zhou L, Xiang H. A single gene directs both production and immunity of halocin C8 in a haloarchaeal strain AS7092. Molecular microbiology. 2005;57(2):537-49.
Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Natural product reports. 2007;24(4):708-34.
Palmer T, Berks BC. The twin-arginine translocation (Tat) protein export pathway. Nature Reviews Microbiology. 2012;10(7):483-96.
Stein T, Heinzmann S, Solovieva I, Entian K-D. Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis. Journal of Biological Chemistry. 2003;278(1):89-94.
Shand RF, Leyva KJ. Archaeal antimicrobials: an undiscovered country. Archaea: new models for prokaryotic biology. 2008;2008.
Pašić L, Velikonja BH, Ulrih NP. Optimization of the culture conditions for the production of a bacteriocin from halophilic archaeon Sech7a. Preparative biochemistry & biotechnology. 2008;38(3):229-45.
Kavitha P, Lipton A, Sarika A, Aishwarya M. Growth characteristics and halocin production by a new isolate, Haloferax volcanii KPS1 from Kovalam solar saltern (India). Res J Biol Sci. 2011;6:257-62.
Karthikeyan P, Bhat SG, Chandrasekaran. Halocin SH10 production by an extreme haloarchaeon Natrinema sp. BTSH10 isolated from salt pans of South India. Saudi journal of biological sciences. 2013;20(2):205-12.
Kushner DJ. Life in high salt and solute concentrations: halophilic bacteria. Microbial life in extreme environments. 1978.
Kumar V, Tiwari SK. Activity-guided separation and characterization of new halocin HA3 from fermented broth of Haloferax larsenii HA3. Extremophiles. 2017;21(3):609-21.
Mazguene S, Rossi M, Gogliettino M, Palmieri G, Cocca E, Mirino S, et al. Isolation and characterization from solar salterns of North Algeria of a haloarchaeon producing a new halocin. Extremophiles. 2018;22(2):259-70.
Ellen AF, Rohulya OV, Fusetti F, Wagner M, Albers S-V, Driessen AJ. The sulfolobicin genes of Sulfolobus acidocaldarius encode novel antimicrobial proteins. Journal of bacteriology. 2011;193(17):4380-7.
Kawarabayasi Y, Hino Y, Horikawa H, Jin-no K, Takahashi M, Sekine M, et al. Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA research. 2001;8(4):123-40.
Majeed H, Gillor O, Kerr B, Riley MA. Competitive interactions in Escherichia coli populations: the role of bacteriocins. The ISME journal. 2011;5(1):71-81.
Kjos M, Borrero J, Opsata M, Birri DJ, Holo H, Cintas LM, et al. Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria. Microbiology. 2011;157(12):3256-67.
Montgomery K, Charlesworth JC, LeBard R, Visscher PT, Burns BP. Quorum sensing in extreme environments. Life. 2013;3(1):131-48.
Paggi RA, Martone CB, Fuqua C, De Castro RE. Detection of quorum sensing signals in the haloalkaliphilic archaeon Natronococcus occultus. FEMS microbiology letters. 2003;221(1):49-52.
Singh A, Singh AK. Haloarchaea: worth exploring for their biotechnological potential. Biotechnology letters. 2017;39(12):1793-800.
Birbir M. Examination of amylase, caseinase and cellulase enzyme production of extremely halophilic strains isolated from Tuz Lake, Kaldırım and Kayacık Salterns and Tuzköy salt mine. Marine Bacteriology. 2004:25-7.
Lee H-S. Diversity of halophilic archaea in fermented foods and human intestines and their application. Journal of microbiology and biotechnology. 2013;23(12):1645-53.
Huby TJ, Clark DR, McKew BA, McGenity TJ. Extremely halophilic archaeal communities are resilient to short‐term entombment in halite. Environmental microbiology. 2021;23(7):3370-83.
Wu J, Zhao L, Liu X, Chen W, Gu H. Recent progress in cleaner preservation of hides and skins. Journal of Cleaner Production. 2017;148:158-73.
Birbir M, Eryilmaz S. Inhibiting lipolytic haloarchaeal damage on brine cured hides with halocin producer strains. Journal of the Society of Leather Technologists and Chemists. 2007;91(2).
Donowitz M, Tse CM, Fuster D. SLC9/NHE gene family, a plasma membrane and organellar family of Na+/H+ exchangers. Molecular aspects of medicine. 2013;34(2-3):236-51.
_||_
Haney EF, Brito-Sánchez Y, Trimble MJ, Mansour SC, Cherkasov A, Hancock RE. Computer-aided discovery of peptides that specifically attack bacterial biofilms. Scientific reports. 2018;8(1):1-12.
Chandrangsu P, Rensing C, Helmann JD. Metal homeostasis and resistance in bacteria. Nat Rev Microbiol. 2017;15(6):338-50.
Wong DL, Merrifield-MacRae ME, Stillman MJ. Lead (II) binding in metallothioneins. Lead: Its Effects on Environment and Health. 2017;17:241.
Lee T-H, N Hall K, Aguilar M-I. Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure. Current topics in medicinal chemistry. 2016;16(1): 25-39.
Roscetto E, Contursi P, Vollaro A, Fusco S, Notomista E, Catania MR. Antifungal and anti-biofilm activity of the first cryptic antimicrobial peptide from an archaeal protein against Candida spp. clinical isolates. Scientific reports. 2018;8(1):1-11.
Wiradharma N, Sng MY, Khan M, Ong ZY, Yang YY. Rationally designed α‐helical broad‐spectrum antimicrobial peptides with idealized facial amphiphilicity. Macromolecular rapid communications. 2013;34(1):74-80.
Fjell CD, Hiss JA, Hancock RE, Schneider G. Designing antimicrobial peptides: form follows function. Nature reviews Drug discovery. 2012;11(1):37-51.
Candido ES, Cardoso MH, Chan LY, Torres MD, Oshiro KG, Porto WF, et al. Short cationic peptide derived from Archaea with dual antibacterial properties and anti-infective potential. ACS infectious diseases. 2019;5(7):1081-6.
Atanasova NS, Pietilä MK, Oksanen HM. Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier. MicrobiologyOpen. 2013;2(5):811-25.
Kumar V, Singh B, van Belkum MJ, Diep DB, Chikindas ML, Ermakov AM, et al. Halocins, natural antimicrobials of Archaea: Exotic or special or both? Biotechnology Advances. 2021;53:107834.
Corral P, Amoozegar MA, Ventosa A. Halophiles and their biomolecules: Recent advances and future applications in biomedicine. Marine drugs. 2020;18(1):33.
Arahal DR, Oren A, Ventosa A. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Halobacteria and Subcommittee on the taxonomy of Halomonadaceae. Minutes of the joint open meeting, 11 July 2017, Valencia, Spain. International Journal of Systematic and Evolutionary Microbiology. 2017;67(10):4279.
Torregrosa-Crespo J, Pire Galiana C, Martínez-Espinosa RM. Biocompounds from Haloarchaea and their uses in biotechnology. Archaea-New Biocatalysts, Novel Pharmaceuticals and Various Biotechnological Applications InTech. 2017:63-82.
Seckbach J, Oren A, Stan-Lotter H. Polyextremophiles: life under multiple forms of stress: Springer Science & Business Media; 2013.
Bowers KJ, Wiegel J. Temperature and pH optima of extremely halophilic archaea: a mini-review. Extremophiles. 2011;15(2):119-28.
Zaghian S, Emtiazi G, Shokri D. A Bacteriocin with Broad Antimicrobial Activity Produced by Newly Isolated Nitrogen-Fixing Bacillus Strains. Journal of Isfahan Medical School. 2013;30(218).
Ghoul M, Mitri S. The ecology and evolution of microbial competition. Trends in microbiology. 2016;24(10):833-45.
Besse A, Peduzzi J, Rebuffat S, Carre-Mlouka A. Antimicrobial peptides and proteins in the face of extremes: Lessons from archaeocins. Biochimie. 2015;118:344-55.
Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural product reports. 2013;30(1):108-60.
Jenab A, Roghanian R, Emtiazi G. Encapsulation of platelet in kefiran polymer and detection of bioavailability of immobilized platelet in probiotic kefiran as a new drug for surface bleeding. Journal of Medical Bacteriology. 2015;4(3-4):45-55.
Motahari P, Amini-Bayat Z, Mirdamadi S. Bacteriocins: New generation of antimicrobial peptides. The Journal of Qazvin University of Medical Sciences. 2017;21(2):79-94.
Mirhosseini M, Emtiazi G. Optimisation of enterocin A production on a whey-based substrate. World Appl Sci J. 2011;14(10):1493-9.
Vassiliadis G, Destoumieux-Garzón D, Peduzzi J. Class II microcins. Prokaryotic antimicrobial peptides: Springer; 2011. p. 309-32.
Cotter PD. An ‘U pp'‐turn in bacteriocin receptor identification. Molecular microbiology. 2014;92(6):1159-63.
Pizzo E, Cafaro V, Di Donato A, Notomista E. Cryptic antimicrobial peptides: identification methods and current knowledge of their immunomodulatory properties. Current pharmaceutical design. 2018;24(10):1054-66.
Pane K, Durante L, Crescenzi O, Cafaro V, Pizzo E, Varcamonti M, et al. Antimicrobial potency of cationic antimicrobial peptides can be predicted from their amino acid composition: Application to the detection of “cryptic” antimicrobial peptides. Journal of theoretical biology. 2017;419:254-65.
Swidergall M, Ernst JF. Interplay between Candida albicans and the antimicrobial peptide armory. Eukaryotic cell. 2014;13(8):950-7.
Zaghian S, Shokri D, Emtiazi G. Co-production of a UV-stable bacteriocin-like inhibitory substance (BLIS) and indole-3-acetic acid hormone (IAA) and their optimization by Taguchi design in Bacillus pumilus. Annals of microbiology. 2012;62(3):1189-97.
Meena KR, Kanwar SS. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. BioMed research international. 2015;2015.
Fanaei M, Emtiazi G. Microbial assisted (Bacillus mojavensis) production of bio-surfactant lipopeptide with potential pharmaceutical applications and its characterization by MALDI-TOF-MS analysis. Journal of Molecular Liquids. 2018;268:707-14.
Mirani ZA, Khan MN, Siddiqui A, Khan F, Aziz M, Naz S, et al. Ascorbic acid augments colony spreading by reducing biofilm formation of methicillin-resistant Staphylococcus aureus. Iranian journal of basic medical sciences. 2018;21(2):175.
Mishra B, Lushnikova T, Wang G. Small lipopeptides possess anti-biofilm capability comparable to daptomycin and vancomycin. RSC advances. 2015;5(73):59758-69.
Alajlani M, Shiekh A, Hasnain S, Brantner A. Purification of bioactive lipopeptides produced by Bacillus subtilis strain BIA. Chromatographia. 2016;79(21):1527-32.
Etemadzadeh SS, Emtiazi G. In vitro identification of antimicrobial hemolytic lipopeptide from halotolerant Bacillus by Zymogram, FTIR, and GC mass analysis. Iranian Journal of Basic Medical Sciences. 2021;24(5):666.
Ghoreishi FS, Roghanian R, Emtiazi G. Inhibition of quorum sensing-controlled virulence factors with natural substances and novel protease, obtained from Halobacillus karajensis. Microbial Pathogenesis. 2020;149:104555.
Dehghanifar S, Keyhanfar M, Emtiazi G. Production and partial purification of thermostable bacteriocins from Bacillus pumilus ZED17 and DFAR8 strains with antifungal activity. Molecular Biology Research Communications. 2019;8(1):41.
Ghanmi F, Carré-Mlouka A, Zarai Z, Mejdoub H, Peduzzi J, Maalej S, et al. The extremely halophilic archaeon Halobacterium salinarum ETD5 from the solar saltern of Sfax (Tunisia) produces multiple halocins. Research in microbiology. 2020;171(2):80-90.
Rodriguez-Valera F, editor Biotechnological potential of halobacteria. Biochemical Society Symposium; 1992.
Tadeo X, López-Méndez B, Trigueros T, Laín A, Castano D, Millet O. Structural basis for the aminoacid composition of proteins from halophilic archea. PLoS biology. 2009;7(12):e1000257.
Matarredona L, Camacho M, Zafrilla B, Bonete M-J, Esclapez J. The role of stress proteins in Haloarchaea and their adaptive response to environmental shifts. Biomolecules. 2020;10(10):1390.
Price LB, Shand RF. Halocin S8: a 36-amino-acid microhalocin from the haloarchaeal strain S8a. Journal of bacteriology. 2000;182(17):4951-8.
Abbasi S, Emtiazi G. MALDI‐TOF analysis of a novel extremophile peptide purified from Halarchaeum acidiphilum ASDL78 with antiarchaeal and antibacterial activities. Journal of Basic Microbiology. 2020;60(11-12):920-30.
Gabrielsen C, Brede DA, Nes IF, Diep DB. Circular bacteriocins: biosynthesis and mode of action. Applied and environmental microbiology. 2014;80(22):6854-62.
Platas G, Meseguer I, Amils R. Purification and biological characterization of halocin H1 from Haloferax mediterranei M2a. International Microbiology. 2002;5(1):15-9.
O'connor E, Shand R. Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. Journal of Industrial Microbiology and Biotechnology. 2002;28(1):23-31.
Meseguer I, Torreblanca M, Konishi T. Specific Inhibition of the Halobacterial Na+/H+ Antiporter by Halocin H6 (*). Journal of Biological Chemistry. 1995;270(12):6450-5.
Lequerica JL, O’Connor J, Such L, Alberola A, Meseguer I, Dolz M, et al. A halocin acting on Na+/H+ exchanger of Haloarchaea as a new type of inhibitor in NHE of mammals. Journal of physiology and biochemistry. 2006;62(4):253-62.
Paulino C, Wöhlert D, Kapotova E, Yildiz Ö, Kühlbrandt W. Structure and transport mechanism of the sodium/proton antiporter MjNhaP1. Elife. 2014;3:e03583.
Haseltine C, Hill T, Montalvo-Rodriguez R, Kemper SK, Shand RF, Blum P. Secreted euryarchaeal microhalocins kill hyperthermophilic crenarchaea. Journal of bacteriology. 2001;183(1):287-91.
Shand RF, Leyva KJ. Peptide and protein antibiotics from the domain Archaea: halocins and sulfolobicins. Bacteriocins: Springer; 2007. p. 93-109.
Meknaci R, Lopes P, Servy C, Le Caer J-P, Andrieu J-P, Hacène H, et al. Agar-supported cultivation of Halorubrum sp. SSR, and production of halocin C8 on the scale-up prototype Platotex. Extremophiles. 2014;18(6):1049-55.
Imadalou-Idres N, Carré-Mlouka A, Vandervennet M, Yahiaoui H, Peduzzi J, Rebuffat S. Diversity and antimicrobial activity of cultivable halophilic archaea from three Algerian sites. Journal of Life Sciences. 2013;7(10):1057.
Sun C, Li Y, Mei S, Lu Q, Zhou L, Xiang H. A single gene directs both production and immunity of halocin C8 in a haloarchaeal strain AS7092. Molecular microbiology. 2005;57(2):537-49.
Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Natural product reports. 2007;24(4):708-34.
Palmer T, Berks BC. The twin-arginine translocation (Tat) protein export pathway. Nature Reviews Microbiology. 2012;10(7):483-96.
Stein T, Heinzmann S, Solovieva I, Entian K-D. Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis. Journal of Biological Chemistry. 2003;278(1):89-94.
Shand RF, Leyva KJ. Archaeal antimicrobials: an undiscovered country. Archaea: new models for prokaryotic biology. 2008;2008.
Pašić L, Velikonja BH, Ulrih NP. Optimization of the culture conditions for the production of a bacteriocin from halophilic archaeon Sech7a. Preparative biochemistry & biotechnology. 2008;38(3):229-45.
Kavitha P, Lipton A, Sarika A, Aishwarya M. Growth characteristics and halocin production by a new isolate, Haloferax volcanii KPS1 from Kovalam solar saltern (India). Res J Biol Sci. 2011;6:257-62.
Karthikeyan P, Bhat SG, Chandrasekaran. Halocin SH10 production by an extreme haloarchaeon Natrinema sp. BTSH10 isolated from salt pans of South India. Saudi journal of biological sciences. 2013;20(2):205-12.
Kushner DJ. Life in high salt and solute concentrations: halophilic bacteria. Microbial life in extreme environments. 1978.
Kumar V, Tiwari SK. Activity-guided separation and characterization of new halocin HA3 from fermented broth of Haloferax larsenii HA3. Extremophiles. 2017;21(3):609-21.
Mazguene S, Rossi M, Gogliettino M, Palmieri G, Cocca E, Mirino S, et al. Isolation and characterization from solar salterns of North Algeria of a haloarchaeon producing a new halocin. Extremophiles. 2018;22(2):259-70.
Ellen AF, Rohulya OV, Fusetti F, Wagner M, Albers S-V, Driessen AJ. The sulfolobicin genes of Sulfolobus acidocaldarius encode novel antimicrobial proteins. Journal of bacteriology. 2011;193(17):4380-7.
Kawarabayasi Y, Hino Y, Horikawa H, Jin-no K, Takahashi M, Sekine M, et al. Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA research. 2001;8(4):123-40.
Majeed H, Gillor O, Kerr B, Riley MA. Competitive interactions in Escherichia coli populations: the role of bacteriocins. The ISME journal. 2011;5(1):71-81.
Kjos M, Borrero J, Opsata M, Birri DJ, Holo H, Cintas LM, et al. Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria. Microbiology. 2011;157(12):3256-67.
Montgomery K, Charlesworth JC, LeBard R, Visscher PT, Burns BP. Quorum sensing in extreme environments. Life. 2013;3(1):131-48.
Paggi RA, Martone CB, Fuqua C, De Castro RE. Detection of quorum sensing signals in the haloalkaliphilic archaeon Natronococcus occultus. FEMS microbiology letters. 2003;221(1):49-52.
Singh A, Singh AK. Haloarchaea: worth exploring for their biotechnological potential. Biotechnology letters. 2017;39(12):1793-800.
Birbir M. Examination of amylase, caseinase and cellulase enzyme production of extremely halophilic strains isolated from Tuz Lake, Kaldırım and Kayacık Salterns and Tuzköy salt mine. Marine Bacteriology. 2004:25-7.
Lee H-S. Diversity of halophilic archaea in fermented foods and human intestines and their application. Journal of microbiology and biotechnology. 2013;23(12):1645-53.
Huby TJ, Clark DR, McKew BA, McGenity TJ. Extremely halophilic archaeal communities are resilient to short‐term entombment in halite. Environmental microbiology. 2021;23(7):3370-83.
Wu J, Zhao L, Liu X, Chen W, Gu H. Recent progress in cleaner preservation of hides and skins. Journal of Cleaner Production. 2017;148:158-73.
Birbir M, Eryilmaz S. Inhibiting lipolytic haloarchaeal damage on brine cured hides with halocin producer strains. Journal of the Society of Leather Technologists and Chemists. 2007;91(2).
Donowitz M, Tse CM, Fuster D. SLC9/NHE gene family, a plasma membrane and organellar family of Na+/H+ exchangers. Molecular aspects of medicine. 2013;34(2-3):236-51.