مهندسی تولید چربی در ریزسازواره های روغنی
محورهای موضوعی : زیست فناوری میکروبیفاطمه قناعتیان 1 , احمدفرهاد طالبی 2 *
1 - دانشجوی کارشناسی ارشد، دانشگاه سمنان، دانشکده زیست فناوری میکروبی، گروه زیست فناوری میکروبی
2 - استادیار، دانشگاه سمنان، دانشکده زیست فناوری، گروه زیست فناوری میکروبی
کلید واژه: سوخت زیستی, مهندسی ژنتیک, متابولیسم چربی, روغن های میکروبی, ریزسازواره های روغنی,
چکیده مقاله :
روغن های میکروبی به دلیل تأمین اسیدهای چرب ضروری و به عنوان منابع تجدیدپذیر انرژی، مورد توجه محققین قرار دارند. ریزسازواره های روغنی تا بیش از 60 درصد وزن خود، روغن را به شکل تری گلیسرید انباشته می کنند. چهار گروه از ریزسازواره ها شامل باکتری ها، ریزجلبک ها، قارچ ها و مخمرها از بزرگترین تولید کننده های روغن های میکروبی هستند. عوامل مختلف فیزیکی و شیمیایی در تولید روغن های میکروبی موثراند. از میان عوامل مختلف می توان به منبع کربن، فقر برخی از مواد مغذی دما، شدت نور و pH محیط اشاره نمود. بهینه سازی تولید روغن های میکروبی توسط عوامل مختلف فیزیکی و شیمیایی با محدودیت هایی روبه رو است. بنابراین، در حال حاضر بیشتر پژوهش ها به سمت اصلاحات ژنتیکی برای بهینه سازی تولید چربی در ریزسازواره های روغنی معطوف شده اند. در این مطالعه مروری، نخست مقالات مرتبط با عنوان مهندسی تولید چربی در ریزسازواره های روغنی با کلیدواژه های مرتبط، از سال 1990 تا سال 2017 در پایگاه علمی جستجو و از بین 210 مقاله اصیل، جمعاً 89 مقاله انتخاب و مورد بررسی قرار گرفت. به منظور تحقق هرچه بهتر جایگزینی منابع جدید روغن در ابعاد وسیع، این منابع باید از نظر ویژگی های منحصربفردی مانند تولید اسیدهای چرب غیراشباع، عملکرد تولید روغن، محتوی و نوع چربی تولید شده بهینه شوند. مقاله حاضر تلاشی است برای ارائه مجموعه جامعی از راهبردهای افزایش عملکرد تولید روغن در ریزسازواره های روغنی که ضمن حفاظت از محیط زیست و منابع ژنتیکی، می توانند در راستای اهداف اقتصادی بنگاه های دانش بنیان موثر واقع شوند.
Microbial oils are of great interest to researchers as they provide essential fatty acids and are among renewable energy sources. Oleaginous microorganisms have the ability to produce oils up to 60% of their weight, most of which are accumulated in the form of triglycerides. Fouroleaginous genera including bacteria, microalgae, fungi, and yeasts are among the largestproducers of microbial oils. A variety of physical and chemical factors are effective in microbial oils production, among which carbon source, nutrient deficiency, temperature, light intensity and pH of the environment can be noticed. Considering the constraints faced by various physical and chemical treatments in microbial oils production, most researches are currently focusing ongenetic modifications to enhance lipid production in oleaginous microorganisms. This articlereviewed 210 peer-reviewed articles entitled engineering of lipid production in oleaginousmicroorganisms in scientific databases during 1990-2017, among which 89 to particles wereselected for further assessments. In order to have the best achievement in replacement of new oil sources on a large scale, these resources should be optimized in terms of unique properties such as unsaturated fatty acids production, lipid yield, as well as lipid profile. The present study is anattempt to recommend some basic approaches to increase microbial oils production by oleaginous microorganisms. These strategies should be in line with genetic and environment-protection priorities. Concurrently, they could be useful for knowledge-based enterprises from the economical point of view.
biofuels to natural products. Bioresour Technol. 2013; 135: 166-174.
2. Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabedini M, Mirzaei
H, Mirzajanzadeh M, Shafaroudi S, Bakhtiari S. Fatty acids profiling: a selective criterion for
screening microalgae strains for biodiesel production. Algal Res. 2013; 2(3): 258-267.
3. Liang MH, Jiang JG. Advancing oleaginous microorganisms to produce lipid via metabolic
engineering technology. Prog Lipid Res. 2013; 52(4): 395-408.
4. Bellou S, Triantaphyllidou IE, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G. Microbial
oils as food additives: recent approaches for improving microbial oil production and its
polyunsaturated fatty acid content. Curr Opin Biotechnol. 2016; 37: 24-35.
5. Talebi AF, Tohidfar M, Mousavi Derazmahalleh SM, Sulaiman A, Baharuddin AS, Tabatabaei
M. Biochemical modulation of lipid pathway in microalgae Dunaliella sp. for biodiesel
production. Biomed Res Int. 2015; 2015: 1-12.
6. Donot F, Fontana A, Baccou J, Strub C, Schorr-Galindo S. Single cell oils (SCOs) from
oleaginous yeasts and moulds: production and genetics. Biomass Bioenergy. 2014; 68:
135-150.
7. Adrio JL. Oleaginous yeasts: promising platforms for the production of oleochemicals and
biofuels. Biotechnol Bioeng. 2017; 144(19): 1915-1920.
8. Beopoulos A, Nicaud J-M, Gaillardin C. An overview of lipid metabolism in yeasts and its
impact on biotechnological processes. Appl Microbiol Biotechnol. 2011; 90(4): 1193-1206.
9. Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and
disease. Nat Rev Neurosci. 2014; 15(12): 771-778.
10. Bruen R, Fitzsimons S, Belton O. Atheroprotective effects of conjugated linoleic acid. Br J
Clin Pharmacol. 2017; 83(1): 46-53.
11. Passoth V. Lipids of yeasts and filamentous fungi and their importance for biotechnology.
Biotechnology of Yeasts and Filamentous Fungi: Springer; 2017; 83(1): 149-204.
12. ača , arcinčá , Čertí , pel a , arcinčá á , t á , lnár ,
lemp á , as aľ á . ffect f a in prefrmente cereal pr ct c ntainin
gamma-linolenic acid to broiler feed on production indicators and fatty acid profile of chicken
breast. Acta Ve Brno. 2014; 83(4): 379-384.
13. Madani M, Enshaeieh M, Abdoli A. Single cell oil and its application for biodiesel
production. Process Saf Environ. 2017; 92(3): 46-53.
14. Li Q, Du W, Liu D. Perspectives of microbial oils for biodiesel production. Appl Microbiol
Biotechnol. 2008; 80(5): 749-756.
15. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae.
J Biosci Bioeng. 2006; 101(2): 87-96.
16. Odjadjare EC, Mutanda T, Olaniran AO. Potential biotechnological application of microalgae:
a critical review. Crit Rev Biotechnol. 2017; 37(1): 37-52.
17. Shaojin Y, Yiping Z. Research and application of oleaginous microorganism. China
Foreign Energy. 2006; 2: 21-32.
18. Xue F, Zhang X, Tan T. Research advance and prospect in microbial oils. Chinese J
Bioprocess Engin. 2005; 3(1): 23-27.
19. Gouda MK, Omar SH, Aouad LM. Single cell oil production by Gordonia sp. DG using
agro-industrial wastes. World J Microbiol Biotechnol. 2008; 24(9): 1703-1659.
20. Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil
production. Biochem. 2004; 86(11): 807-815.
21. Haslam TM, Kunst L. Extending the story of very-long-chain fatty acid elongation. Plant Sci.
2013; 210: 93-107.
22. Koolman J, Röhm KH, Wirth J, Robertson M. Color atlas of biochemistry. Thieme Stuttgart;
2005; 120: 120-152.
23. Berg JM, Tymoczko JL. Biochemistry/Jeremy M. Berg, John L. Tymoczko, Lubert Stryer;
web content by Neil D. Clarke. 1998; pp: 524-560.
24. Zhang JY, Kothapalli KS, Brenna JT. Desaturase and elongase-limiting endogenous
long-chain polyunsaturated fatty acid biosynthesis. Curr Opin Clin Nutr. 2016; 19(2): 103-110.
25. Kosa M, Ragauskas AJ. Lipids from heterotrophic microbes: advances in metabolism
research. Trends Biotechnol. 2011; 29(2): 53-61.
26. Rajakumari S, Grillitsch K, Daum G. Synthesis and turnover of non-polar lipids in yeast. Prog
Lipid Res. 2008; 47(3): 157-171.
27. Courchesne NMD, Parisien A, Wang B, Lan CQ. Enhancement of lipid production using
biochemical, genetic and transcription factor engineering approaches. J Biotechnol. 2009; 141
(1): 31-41.
28. Talebi AF, Tohidfar M, Bagheri A, Lyon SR, Salehi-Ashtiani k, Tabatabaei M. Manipulation
of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina using AccD and ME
genes to enhance lipid content and to improve produced biodiesel quality. Biofuel Res J. 2014;
1(3): 91-97.
29. Yang S, Wang W, Wei H, Van Wychen S, Pienkos PT, Zhang M, Himmel M. Comparison of
nitrogen depletion and repletion on lipid production in yeast and fungal species. Energies.
2016; 9(9): 685-699.
30. Subramaniam R, Dufreche S, Zappi M, Bajpai R. Microbial lipids from renewable resources:
production and characterization. J Ind Microbiol Biotechnol. 2010; 37(12): 1271-1287.
31. Ruenwai R, Cheevadhanarak S, Laoteng K. Overexpression of acetyl-CoA carboxylase gene
of Mucor rouxii enhanced fatty acid content in Hansenula polymorpha. Mol Biotechnol. 2009;
42(3): 327-332.
32. Zhang S, Skerker JM, Rutter CD, Maurer MJ, Arkin AP, Rao CV. Engineering
Rhodosporidium toruloides for increased lipid production. Biotechnol Bioeng. 2016; 113(5):
1056-1066.
33. Feng D, Chen Z, Xue S, Zhang W. Increased lipid production of the marine oleaginous
microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour.
Technol. 2011; 102(12): 6710-6716.
34. Khozin-Goldberg I, Cohen Z. The effect of phosphate starvation on the lipid and fatty acid
composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry. 2006;
67(7): 696-701.
35. Lei A, Chen H, Shen G, Hu Z, Chen L, Wang J. Expression of fatty acid synthesis genes and
fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol
Biofuels. 2012; 5(1): 1-25.
36. Li Y, Han D, Hu G, Sommerfeld M, Hu Q. Inhibition of starch synthesis results in
overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng. 2010; 107(2):
258-268.
37. Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H. Multiple pathways for
triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol. 2008; 74(9):
2573-2582.
38. Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M,
Timmis K, Steinbüchel A. Analysis of storage lipid accumulation in Alcanivorax borkumensis:
evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol. 2007; 189
(3): 918-928.
39. Zhang X, Li M, Agrawal A, San KY. Efficient free fatty acid production in Escherichia coli
using plant acyl-ACP thioesterases. Metab Eng. 2011; 13(6): 713-722.
40. Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G.
Evaluating renewable carbon sources as substrates for single cell oil production by
Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy. 2009; 33(4):
573-580.
41. Čertí , altesz , Ša bi r J. ipi f rmati n an γ-linolenic acid production by
Mucorales fungi grown on sunflower oil. Lett Appl Microbiol. 1997; 25(2): 101-105.
42. Zhu L, Zong M, Wu H. Efficient lipid production with Trichosporonfermentans and its use for
biodiesel preparation. Bioresour Technol. 2008; 99(16): 7881-7885.
43. Xu J, Du W, Zhao X, Zhang G, Liu D. Microbial oil production from various carbon sources
and its use for biodiesel preparation. Biofuel Bioprod Bior. 2013; 7(1): 65-77.
44. Cheirsilp B, Kitcha S, Torpee S. Co-culture of an oleaginous yeast Rhodotorula glutinis and a
microalga Chlorella vulgaris for biomass and lipid production using pure and crude glycerol as
a sole carbon source. Ann microbiol. 2012; 62(3): 987-993.
45. Kraisintu P, Yongmanitchai W, Limtong S. Selection and optimization for lipid production of
a newly isolated oleaginous yeast, Rdodosporidium toruloides DMKU3-TK16. Kasetsart J Nat
Sci. 2010; 44: 436-445.
46. Xin L, Hong-ying H, Ke G, Ying-xue S. Effects of different nitrogen and phosphorus
concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater
microalga Scenedesmus sp. Bioresour Technol. 2010; 101(14): 5494-5500.
47. Tang S, Chen M, Yang J, Ni Q, He D, Chen T. Research of producing oil by Mortierella
isabellina. China Oils Fats. 2007; 32(12): 35-37.
48. Wu S, Hu C, Jin G, Zhao X, Zhao ZK. Phosphate-limitation mediated lipid production by
Rhodosporidium toruloides. Bioresour Technol. 2010; 101(15): 6124-6129.
49. Esakkimuthu S, Krishnamurthy V, Govindarajan R ,Swaminathan K. Augmentation and
starvation of calcium, magnesium, phosphate on lipid production of Scenedesmus obliquus.
Biomass Bioenergy. 2016; 88: 126-134.
50. Iwai M, Hori K, Sasaki-Sekimoto Y, Shimojima M, Ohta H. Manipulation of oil synthesis in
Nannochloropsis strain NIES-2145 with a phosphorus starvation–inducible promoter from
Chlamydomonas reinhardtii. Front Microbiol. 2015; 6: 912-918.
51. Mizuno Y, Sato A, Watanabe K, Hirata A, Takeshita T, Ota S, Sato N, Zachleder V, Tsuzuki
M, Kawano S. Sequential accumulation of starch and lipid induced by sulfur deficiency in
Chlorella and Parachlorella species. Bioresour Technol. 2013; 129: 150-155.
52. Sun X, Cao Y, Xu H, Liu Y, Sun J, Qiao D, Cao Y. Effect of nitrogen-starvation, light
intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of
Neochloris oleoabundans HK-129 by a two-stage process. Bioresour Technol. 2014; 155:
204-212.
53. Yeesang C, Cheirsilp B. Effect of nitrogen, salt, and iron content in the growth medium and
light intensity on lipid production by microalgae isolated from freshwater sources in Thailand.
Bioresour Technol. 2011; 102(3): 3034-3040.
54. Kim JH, Choi SK, Park YS, Yun C-W, Cho WD, Chee KM, Chang H. Effect of culture
conditions on astaxanthin formation in red yeast Xanthophyllomyces dendrorhous mutant JH1.
J Microbiol Biotechnol. 2006; 16(3): 438-442.
55. Kruszewska J, Palamarczyk G, Kubicek CP. Stimulation of exoprotein secretion by choline
and Tween 80 in Trichoderma reesei QM 9414 correlates with increased activities of dolichol
phosphate mannose synthase. Microbiol. 1990; 136(7): 1293-1298.
56. Dalmau E, Montesinos J, Lotti M, Casas C. Effect of different carbon sources on lipase
production by Candida rugosa. Enzyme Microb Technol. 2000; 26(9): 657-663.
57. Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T. Efficient concomitant production of lipids
and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent
and application of lipids for biodiesel production. Biotechnol Bioprocess Eng. 2011; 16(1):
23-33.
58. Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG. Oily yeasts as oleaginous cell factories.
Appl Microbiol Biotechnol. 2011; 90(4): 1219-1227.
59. Beltran G, Novo M, Guillamón JM, Mas A, Rozès N. Effect of fermentation temperature and
culture media on the yeast lipid composition and wine volatile compounds. Int J Food
Microbiol. 2008; 121(2): 169-177.
60. Sharma KK, Schuhmann H, Schenk PM. High lipid induction in microalgae for biodiesel
production. Energies. 2012; 5(5): 1532-1553.
61. Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz G. Conversion of sewage sludge into
lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol. 2008; 99(8):
3051-3056.
62. Einicker-Lamas M, Mezian GA, Fernandes TB, Silva FLS, Guerra F, Miranda K, Attias M,
Oliveira M. Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and
accumulation in eukaryotic cells. Environ Pollut. 2002; 120(3): 779-786.
63. Liu ZY, Wang GC, Zhou BC. Effect of iron on growth and lipid accumulation in Chlorella
vulgaris. Bioresour Technol. 2008; 99(11): 17-22.
64. Yen HW, Zhang Z. Enhancement of cell growth rate by light irradiation in the cultivation of
Rhodotorula glutinis. Bioresour Technol. 2011; 102(19): 9279-9281.
65. Nielsen J. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast. MBio.
2014; 5(6): 2141-2153.
66. Tai M, Stephanopoulos G. Engineering the push and pull of lipid biosynthesis in oleaginous
yeast Yarrowia lipolytica for biofuel production. Metab Eng. 2013; 15: 1-9.
67. Runguphan W, Keasling JD. Metabolic engineering. of Saccharomyces cerevisiae for
production of fatty acid-derived biofuels and chemicals. Metab Eng. 2014; 21: 3-13.
68. Lu X, Vora H, Khosla C. Overproduction of free fatty acids in E. coli: implications for
biodiesel production. Metab Eng. 2008; 10(6): 333-339.
69. Voelker TA, Davies HM. Alteration of the specificity and regulation of fatty acid synthesis of
Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J
Bacteriol. 1994; 176(23): 7320-7327.
70. Zheng Z, Zou J. The initial step of the glycerolipid pathway identification of glycerol
3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces
cerevisiae. J Biol Chem. 2001; 276(45): 14710-14716.
71. Zaremberg V, McMaster CR. Differential partitioning of lipids metabolized by separate yeast
glycerol-3-phosphate acyltransferases reveals that phospholipase D generation of phosphatidic
acid mediates sensitivity to choline-containing lysolipids and drugs. J Biol Chem. 2002; 277
(41): 39035-39044.
72. Olukoshi ER, Packter NM. Importance of stored triacylglycerols in Streptomyces: possible
carbon source for antibiotics. Microbiol. 1994; 140(4): 931-943.
73. Qiao K, Abidi SHI, Liu H, Zhang H, Chakraborty S, Watson N, Ajikumar P, Stephanopoulos
G. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng.
2015; 29: 56-65.
74. Vigeolas H, Waldeck P, Zank T, Geigenberger P. Increasing seed oil content in oil-seed rape
(Brassica napus L.) by over‐expression of a yeast glycerol‐3‐phosphate dehydrogenase
under the control of a seed‐specific promoter. Plant Biotechnol J. 2007; 5(3): 431-441.
75. Beopoulos A, Mrozova Z, Thevenieau F, Le Dall M-T, Hapala I, Papanikolaou S, Chardot T,
Nicaud J. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ
Microbiol. 2008; 74; 7779-7789.
76. Dulermo T, Nicaud J-M. Involvement of the G3P shuttle and β-oxidation pathway in the
control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng. 2011; 13
(5): 482-491.
77. Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. Acetyl coenzyme A: a
central metabolite and second messenger. Cell Metab. 2015; 21(6): 805-821.
78. Lin H, Castro NM, Bennett GN, San K-Y. Acetyl-CoA synthetase overexpression in
Escherichia coli demonstrates more efficient acetate assimilation and lower acetate
accumulation: a potential tool in Metabolic engineering. Appl Microbiol Biotechnol. 2006; 71
(6): 870-874.
79. Ratledge C. The role of malic enzyme as the provider of NADPH in oleaginous
microorganisms: a reappraisal and unsolved problems. Biotechnol Lett. 2014; 36(8):
1557-1568.
80. Hou L, Shi D, Cai Z, Song D, Wang X. Regulation of lipids synthesis in transgenic
Escherichia coli by inserting Cyanobacterial sense and antisense pepcA gene. China Biotech
2008; 52: 25-28.
81. Meng X, Yang J, Cao Y, Li L, Jiang X, Xu X, Liu W, Xian M, Zhang Y. Increasing fatty acid
production in E. coli by simulating the lipid accumulation of oleaginous microorganisms. J Ind
Microbiol Biotechnol. 2011; 38(8): 919-925.
82. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM.
Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res. 2009; 48(6): 375-387.
83. Tamano K, Bruno KS, Karagiosis SA, Culley DE, Deng S, Collett JR, Umemura M, Koike H,
Baker S, Machida M. Increased production of fatty acids and triglycerides in Aspergillus
oryzae by enhancing expressions of fatty acid synthesis-related genes. Appl Microbiol
Biotechnol. 2013; 97(1): 269-281.
84. Scharnewski M, Pongdontri P, Mora G, Hoppert M, Fulda M. Mutants of Saccharomyces
cerevisiae deficient in acyl‐CoA synthetases secrete fatty acids due to interrupted fatty acid
recycling. FEBS J. 2008; 275(11): 2765-2778.
85. Beopoulos A, Chardot T, Nicaud J-M. Yarrowia lipolytica: A model and a tool to understand
the mechanisms implicated in lipid accumulation. Biochem. 2009; 91(6): 692-696.
86. líč á , , t enstae t , ' n rea , a m , ar t , Nica J. ipi
accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia
lipolytica. Appl Environ Microbiol. 2004; 70(7): 3918-3924.
87. Coleman RA, Lee DP. Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid
Res. 2004; 43(2): 134-176.
88. Todd BL, Stewart EV, Burg JS, Hughes AL, Espenshade PJ. Sterol regulatory element
binding protein is a principal regulator of anaerobic gene expression in fission yeast. Mol Cell
Biol. 2006; 26(7): 2817-2831.
89. Zhang B, Chen H, Li M, Gu Z, Song Y, Ratledge C, Chen Y, Zhang H, Chen W. Genetic
engineering of Yarrowia lipolytica for enhanced production of trans-10, cis-12 conjugated
linoleic acid. Microb Cell Fact. 2013; 12: 70.
90. Najafi G, Ghobadian B, Tavakoli T, Yusaf T. Potential of bioethanol production from
agricultural wastes in Iran. Renew Sust Energ Rev. 2009; 13(6): 1418-1427.
91. Tabatabaei M, Tohidfar M, Jouzani GS, Safarnejad M, Pazouki M. Biodiesel production from
genetically engineered microalgae: future of bioenergy in Iran. Renew Sust Energ Rev. 2011;
15(4): 1918-1927.
92. Raeesossadati MJ, Ahmadzadeh H, McHenry MP, Moheimani NR. CO2 bioremediation by
microalgae in photobioreactors: impacts of biomass and CO2 concentrations, light, and
temperature. Algal Res. 2014; 6: 78-85.
93. Madadi R, Pourbabaee AA, Tabatabaei M, Zahed MA, Naghavi MR. Treatment of
petrochemical wastewater by the green algae Chlorella vulgaris. Int J Environ Res. 2016; 10
(4): 555-560.
94. Najafi G, Ghobadian B, Yusaf TF. Algae as a sustainable energy source for biofuel production
in Iran: a case study. Renew Sustainable Energy Rev. 2011; 15(8): 3870-3876.
95. Abdoli A, Enshaeieh M, Nahvi I, Madani M. Isolation of oleaginous yeasts and optimization
of lipid production using taguchi design. New Cell Mol Biotechnol J. 2012; 4(14): 13-20.
96. Ghasemi L, Samadlouie H, Jalali H, Gharanjik S. Isolation and identification of Candida
orthopsilosi SAGSGC as oleaginous yeast in perch fish by using ribosomal gene and
optimization of oil and biomass production. J Agr Food Chem. 2017; 14(70): 1-12.
97. Pourbabaee A, Mondaniizadeh M. Single cell oil production from petroleum sludge by
native yeast strains. J Rene Energy Environ. 2014; 2: 19.
98. Enshaeieh M, Abdoli A, Madani M. Single cell oil (SCO) production by Rhodotorula
mucilaginosa and its environmental benefits. J Agr Sci Tech. 2015; 17(2): 387-400.
99. Enshaeieh M, Abdoli A, Nahvi I, Madani M. Bioconversion of different carbon sources in to
microbial oil and biodiesel using oleaginous yeasts. J Biol Todays World. 2012; 1(2): 82-92.
100. Shafiei N, Beheshti MK, Madani M. Isolation, optimization, and investigation of production
of linoleic acid in Aspergillus niger. Qom Univ Med Sci J. 2016; 10(6): 24-31.
101. Mohammadi Nasr M, Nahvi I, Biria D, Mirbagheri M. Optimization of culture media for
enhancing gamma-linolenic acid production by Mucor hiemalis. Biological J Microorganism.
2016; 4(16): 25-31.
102. Nasr MM, Nahvi I, Keyhanfar M, Mirbagheri M. The effect of carbon and nitrogen sources
on the fatty acids profile of Mortierella vinacea. Biological J Microorganism. 2017; 5(20): 1
_||_
biofuels to natural products. Bioresour Technol. 2013; 135: 166-174.
2. Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabedini M, Mirzaei
H, Mirzajanzadeh M, Shafaroudi S, Bakhtiari S. Fatty acids profiling: a selective criterion for
screening microalgae strains for biodiesel production. Algal Res. 2013; 2(3): 258-267.
3. Liang MH, Jiang JG. Advancing oleaginous microorganisms to produce lipid via metabolic
engineering technology. Prog Lipid Res. 2013; 52(4): 395-408.
4. Bellou S, Triantaphyllidou IE, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G. Microbial
oils as food additives: recent approaches for improving microbial oil production and its
polyunsaturated fatty acid content. Curr Opin Biotechnol. 2016; 37: 24-35.
5. Talebi AF, Tohidfar M, Mousavi Derazmahalleh SM, Sulaiman A, Baharuddin AS, Tabatabaei
M. Biochemical modulation of lipid pathway in microalgae Dunaliella sp. for biodiesel
production. Biomed Res Int. 2015; 2015: 1-12.
6. Donot F, Fontana A, Baccou J, Strub C, Schorr-Galindo S. Single cell oils (SCOs) from
oleaginous yeasts and moulds: production and genetics. Biomass Bioenergy. 2014; 68:
135-150.
7. Adrio JL. Oleaginous yeasts: promising platforms for the production of oleochemicals and
biofuels. Biotechnol Bioeng. 2017; 144(19): 1915-1920.
8. Beopoulos A, Nicaud J-M, Gaillardin C. An overview of lipid metabolism in yeasts and its
impact on biotechnological processes. Appl Microbiol Biotechnol. 2011; 90(4): 1193-1206.
9. Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and
disease. Nat Rev Neurosci. 2014; 15(12): 771-778.
10. Bruen R, Fitzsimons S, Belton O. Atheroprotective effects of conjugated linoleic acid. Br J
Clin Pharmacol. 2017; 83(1): 46-53.
11. Passoth V. Lipids of yeasts and filamentous fungi and their importance for biotechnology.
Biotechnology of Yeasts and Filamentous Fungi: Springer; 2017; 83(1): 149-204.
12. ača , arcinčá , Čertí , pel a , arcinčá á , t á , lnár ,
lemp á , as aľ á . ffect f a in prefrmente cereal pr ct c ntainin
gamma-linolenic acid to broiler feed on production indicators and fatty acid profile of chicken
breast. Acta Ve Brno. 2014; 83(4): 379-384.
13. Madani M, Enshaeieh M, Abdoli A. Single cell oil and its application for biodiesel
production. Process Saf Environ. 2017; 92(3): 46-53.
14. Li Q, Du W, Liu D. Perspectives of microbial oils for biodiesel production. Appl Microbiol
Biotechnol. 2008; 80(5): 749-756.
15. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae.
J Biosci Bioeng. 2006; 101(2): 87-96.
16. Odjadjare EC, Mutanda T, Olaniran AO. Potential biotechnological application of microalgae:
a critical review. Crit Rev Biotechnol. 2017; 37(1): 37-52.
17. Shaojin Y, Yiping Z. Research and application of oleaginous microorganism. China
Foreign Energy. 2006; 2: 21-32.
18. Xue F, Zhang X, Tan T. Research advance and prospect in microbial oils. Chinese J
Bioprocess Engin. 2005; 3(1): 23-27.
19. Gouda MK, Omar SH, Aouad LM. Single cell oil production by Gordonia sp. DG using
agro-industrial wastes. World J Microbiol Biotechnol. 2008; 24(9): 1703-1659.
20. Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil
production. Biochem. 2004; 86(11): 807-815.
21. Haslam TM, Kunst L. Extending the story of very-long-chain fatty acid elongation. Plant Sci.
2013; 210: 93-107.
22. Koolman J, Röhm KH, Wirth J, Robertson M. Color atlas of biochemistry. Thieme Stuttgart;
2005; 120: 120-152.
23. Berg JM, Tymoczko JL. Biochemistry/Jeremy M. Berg, John L. Tymoczko, Lubert Stryer;
web content by Neil D. Clarke. 1998; pp: 524-560.
24. Zhang JY, Kothapalli KS, Brenna JT. Desaturase and elongase-limiting endogenous
long-chain polyunsaturated fatty acid biosynthesis. Curr Opin Clin Nutr. 2016; 19(2): 103-110.
25. Kosa M, Ragauskas AJ. Lipids from heterotrophic microbes: advances in metabolism
research. Trends Biotechnol. 2011; 29(2): 53-61.
26. Rajakumari S, Grillitsch K, Daum G. Synthesis and turnover of non-polar lipids in yeast. Prog
Lipid Res. 2008; 47(3): 157-171.
27. Courchesne NMD, Parisien A, Wang B, Lan CQ. Enhancement of lipid production using
biochemical, genetic and transcription factor engineering approaches. J Biotechnol. 2009; 141
(1): 31-41.
28. Talebi AF, Tohidfar M, Bagheri A, Lyon SR, Salehi-Ashtiani k, Tabatabaei M. Manipulation
of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina using AccD and ME
genes to enhance lipid content and to improve produced biodiesel quality. Biofuel Res J. 2014;
1(3): 91-97.
29. Yang S, Wang W, Wei H, Van Wychen S, Pienkos PT, Zhang M, Himmel M. Comparison of
nitrogen depletion and repletion on lipid production in yeast and fungal species. Energies.
2016; 9(9): 685-699.
30. Subramaniam R, Dufreche S, Zappi M, Bajpai R. Microbial lipids from renewable resources:
production and characterization. J Ind Microbiol Biotechnol. 2010; 37(12): 1271-1287.
31. Ruenwai R, Cheevadhanarak S, Laoteng K. Overexpression of acetyl-CoA carboxylase gene
of Mucor rouxii enhanced fatty acid content in Hansenula polymorpha. Mol Biotechnol. 2009;
42(3): 327-332.
32. Zhang S, Skerker JM, Rutter CD, Maurer MJ, Arkin AP, Rao CV. Engineering
Rhodosporidium toruloides for increased lipid production. Biotechnol Bioeng. 2016; 113(5):
1056-1066.
33. Feng D, Chen Z, Xue S, Zhang W. Increased lipid production of the marine oleaginous
microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour.
Technol. 2011; 102(12): 6710-6716.
34. Khozin-Goldberg I, Cohen Z. The effect of phosphate starvation on the lipid and fatty acid
composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry. 2006;
67(7): 696-701.
35. Lei A, Chen H, Shen G, Hu Z, Chen L, Wang J. Expression of fatty acid synthesis genes and
fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol
Biofuels. 2012; 5(1): 1-25.
36. Li Y, Han D, Hu G, Sommerfeld M, Hu Q. Inhibition of starch synthesis results in
overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng. 2010; 107(2):
258-268.
37. Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H. Multiple pathways for
triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol. 2008; 74(9):
2573-2582.
38. Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M,
Timmis K, Steinbüchel A. Analysis of storage lipid accumulation in Alcanivorax borkumensis:
evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol. 2007; 189
(3): 918-928.
39. Zhang X, Li M, Agrawal A, San KY. Efficient free fatty acid production in Escherichia coli
using plant acyl-ACP thioesterases. Metab Eng. 2011; 13(6): 713-722.
40. Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G.
Evaluating renewable carbon sources as substrates for single cell oil production by
Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy. 2009; 33(4):
573-580.
41. Čertí , altesz , Ša bi r J. ipi f rmati n an γ-linolenic acid production by
Mucorales fungi grown on sunflower oil. Lett Appl Microbiol. 1997; 25(2): 101-105.
42. Zhu L, Zong M, Wu H. Efficient lipid production with Trichosporonfermentans and its use for
biodiesel preparation. Bioresour Technol. 2008; 99(16): 7881-7885.
43. Xu J, Du W, Zhao X, Zhang G, Liu D. Microbial oil production from various carbon sources
and its use for biodiesel preparation. Biofuel Bioprod Bior. 2013; 7(1): 65-77.
44. Cheirsilp B, Kitcha S, Torpee S. Co-culture of an oleaginous yeast Rhodotorula glutinis and a
microalga Chlorella vulgaris for biomass and lipid production using pure and crude glycerol as
a sole carbon source. Ann microbiol. 2012; 62(3): 987-993.
45. Kraisintu P, Yongmanitchai W, Limtong S. Selection and optimization for lipid production of
a newly isolated oleaginous yeast, Rdodosporidium toruloides DMKU3-TK16. Kasetsart J Nat
Sci. 2010; 44: 436-445.
46. Xin L, Hong-ying H, Ke G, Ying-xue S. Effects of different nitrogen and phosphorus
concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater
microalga Scenedesmus sp. Bioresour Technol. 2010; 101(14): 5494-5500.
47. Tang S, Chen M, Yang J, Ni Q, He D, Chen T. Research of producing oil by Mortierella
isabellina. China Oils Fats. 2007; 32(12): 35-37.
48. Wu S, Hu C, Jin G, Zhao X, Zhao ZK. Phosphate-limitation mediated lipid production by
Rhodosporidium toruloides. Bioresour Technol. 2010; 101(15): 6124-6129.
49. Esakkimuthu S, Krishnamurthy V, Govindarajan R ,Swaminathan K. Augmentation and
starvation of calcium, magnesium, phosphate on lipid production of Scenedesmus obliquus.
Biomass Bioenergy. 2016; 88: 126-134.
50. Iwai M, Hori K, Sasaki-Sekimoto Y, Shimojima M, Ohta H. Manipulation of oil synthesis in
Nannochloropsis strain NIES-2145 with a phosphorus starvation–inducible promoter from
Chlamydomonas reinhardtii. Front Microbiol. 2015; 6: 912-918.
51. Mizuno Y, Sato A, Watanabe K, Hirata A, Takeshita T, Ota S, Sato N, Zachleder V, Tsuzuki
M, Kawano S. Sequential accumulation of starch and lipid induced by sulfur deficiency in
Chlorella and Parachlorella species. Bioresour Technol. 2013; 129: 150-155.
52. Sun X, Cao Y, Xu H, Liu Y, Sun J, Qiao D, Cao Y. Effect of nitrogen-starvation, light
intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of
Neochloris oleoabundans HK-129 by a two-stage process. Bioresour Technol. 2014; 155:
204-212.
53. Yeesang C, Cheirsilp B. Effect of nitrogen, salt, and iron content in the growth medium and
light intensity on lipid production by microalgae isolated from freshwater sources in Thailand.
Bioresour Technol. 2011; 102(3): 3034-3040.
54. Kim JH, Choi SK, Park YS, Yun C-W, Cho WD, Chee KM, Chang H. Effect of culture
conditions on astaxanthin formation in red yeast Xanthophyllomyces dendrorhous mutant JH1.
J Microbiol Biotechnol. 2006; 16(3): 438-442.
55. Kruszewska J, Palamarczyk G, Kubicek CP. Stimulation of exoprotein secretion by choline
and Tween 80 in Trichoderma reesei QM 9414 correlates with increased activities of dolichol
phosphate mannose synthase. Microbiol. 1990; 136(7): 1293-1298.
56. Dalmau E, Montesinos J, Lotti M, Casas C. Effect of different carbon sources on lipase
production by Candida rugosa. Enzyme Microb Technol. 2000; 26(9): 657-663.
57. Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T. Efficient concomitant production of lipids
and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent
and application of lipids for biodiesel production. Biotechnol Bioprocess Eng. 2011; 16(1):
23-33.
58. Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG. Oily yeasts as oleaginous cell factories.
Appl Microbiol Biotechnol. 2011; 90(4): 1219-1227.
59. Beltran G, Novo M, Guillamón JM, Mas A, Rozès N. Effect of fermentation temperature and
culture media on the yeast lipid composition and wine volatile compounds. Int J Food
Microbiol. 2008; 121(2): 169-177.
60. Sharma KK, Schuhmann H, Schenk PM. High lipid induction in microalgae for biodiesel
production. Energies. 2012; 5(5): 1532-1553.
61. Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz G. Conversion of sewage sludge into
lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol. 2008; 99(8):
3051-3056.
62. Einicker-Lamas M, Mezian GA, Fernandes TB, Silva FLS, Guerra F, Miranda K, Attias M,
Oliveira M. Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and
accumulation in eukaryotic cells. Environ Pollut. 2002; 120(3): 779-786.
63. Liu ZY, Wang GC, Zhou BC. Effect of iron on growth and lipid accumulation in Chlorella
vulgaris. Bioresour Technol. 2008; 99(11): 17-22.
64. Yen HW, Zhang Z. Enhancement of cell growth rate by light irradiation in the cultivation of
Rhodotorula glutinis. Bioresour Technol. 2011; 102(19): 9279-9281.
65. Nielsen J. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast. MBio.
2014; 5(6): 2141-2153.
66. Tai M, Stephanopoulos G. Engineering the push and pull of lipid biosynthesis in oleaginous
yeast Yarrowia lipolytica for biofuel production. Metab Eng. 2013; 15: 1-9.
67. Runguphan W, Keasling JD. Metabolic engineering. of Saccharomyces cerevisiae for
production of fatty acid-derived biofuels and chemicals. Metab Eng. 2014; 21: 3-13.
68. Lu X, Vora H, Khosla C. Overproduction of free fatty acids in E. coli: implications for
biodiesel production. Metab Eng. 2008; 10(6): 333-339.
69. Voelker TA, Davies HM. Alteration of the specificity and regulation of fatty acid synthesis of
Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J
Bacteriol. 1994; 176(23): 7320-7327.
70. Zheng Z, Zou J. The initial step of the glycerolipid pathway identification of glycerol
3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces
cerevisiae. J Biol Chem. 2001; 276(45): 14710-14716.
71. Zaremberg V, McMaster CR. Differential partitioning of lipids metabolized by separate yeast
glycerol-3-phosphate acyltransferases reveals that phospholipase D generation of phosphatidic
acid mediates sensitivity to choline-containing lysolipids and drugs. J Biol Chem. 2002; 277
(41): 39035-39044.
72. Olukoshi ER, Packter NM. Importance of stored triacylglycerols in Streptomyces: possible
carbon source for antibiotics. Microbiol. 1994; 140(4): 931-943.
73. Qiao K, Abidi SHI, Liu H, Zhang H, Chakraborty S, Watson N, Ajikumar P, Stephanopoulos
G. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng.
2015; 29: 56-65.
74. Vigeolas H, Waldeck P, Zank T, Geigenberger P. Increasing seed oil content in oil-seed rape
(Brassica napus L.) by over‐expression of a yeast glycerol‐3‐phosphate dehydrogenase
under the control of a seed‐specific promoter. Plant Biotechnol J. 2007; 5(3): 431-441.
75. Beopoulos A, Mrozova Z, Thevenieau F, Le Dall M-T, Hapala I, Papanikolaou S, Chardot T,
Nicaud J. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ
Microbiol. 2008; 74; 7779-7789.
76. Dulermo T, Nicaud J-M. Involvement of the G3P shuttle and β-oxidation pathway in the
control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng. 2011; 13
(5): 482-491.
77. Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. Acetyl coenzyme A: a
central metabolite and second messenger. Cell Metab. 2015; 21(6): 805-821.
78. Lin H, Castro NM, Bennett GN, San K-Y. Acetyl-CoA synthetase overexpression in
Escherichia coli demonstrates more efficient acetate assimilation and lower acetate
accumulation: a potential tool in Metabolic engineering. Appl Microbiol Biotechnol. 2006; 71
(6): 870-874.
79. Ratledge C. The role of malic enzyme as the provider of NADPH in oleaginous
microorganisms: a reappraisal and unsolved problems. Biotechnol Lett. 2014; 36(8):
1557-1568.
80. Hou L, Shi D, Cai Z, Song D, Wang X. Regulation of lipids synthesis in transgenic
Escherichia coli by inserting Cyanobacterial sense and antisense pepcA gene. China Biotech
2008; 52: 25-28.
81. Meng X, Yang J, Cao Y, Li L, Jiang X, Xu X, Liu W, Xian M, Zhang Y. Increasing fatty acid
production in E. coli by simulating the lipid accumulation of oleaginous microorganisms. J Ind
Microbiol Biotechnol. 2011; 38(8): 919-925.
82. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM.
Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res. 2009; 48(6): 375-387.
83. Tamano K, Bruno KS, Karagiosis SA, Culley DE, Deng S, Collett JR, Umemura M, Koike H,
Baker S, Machida M. Increased production of fatty acids and triglycerides in Aspergillus
oryzae by enhancing expressions of fatty acid synthesis-related genes. Appl Microbiol
Biotechnol. 2013; 97(1): 269-281.
84. Scharnewski M, Pongdontri P, Mora G, Hoppert M, Fulda M. Mutants of Saccharomyces
cerevisiae deficient in acyl‐CoA synthetases secrete fatty acids due to interrupted fatty acid
recycling. FEBS J. 2008; 275(11): 2765-2778.
85. Beopoulos A, Chardot T, Nicaud J-M. Yarrowia lipolytica: A model and a tool to understand
the mechanisms implicated in lipid accumulation. Biochem. 2009; 91(6): 692-696.
86. líč á , , t enstae t , ' n rea , a m , ar t , Nica J. ipi
accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia
lipolytica. Appl Environ Microbiol. 2004; 70(7): 3918-3924.
87. Coleman RA, Lee DP. Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid
Res. 2004; 43(2): 134-176.
88. Todd BL, Stewart EV, Burg JS, Hughes AL, Espenshade PJ. Sterol regulatory element
binding protein is a principal regulator of anaerobic gene expression in fission yeast. Mol Cell
Biol. 2006; 26(7): 2817-2831.
89. Zhang B, Chen H, Li M, Gu Z, Song Y, Ratledge C, Chen Y, Zhang H, Chen W. Genetic
engineering of Yarrowia lipolytica for enhanced production of trans-10, cis-12 conjugated
linoleic acid. Microb Cell Fact. 2013; 12: 70.
90. Najafi G, Ghobadian B, Tavakoli T, Yusaf T. Potential of bioethanol production from
agricultural wastes in Iran. Renew Sust Energ Rev. 2009; 13(6): 1418-1427.
91. Tabatabaei M, Tohidfar M, Jouzani GS, Safarnejad M, Pazouki M. Biodiesel production from
genetically engineered microalgae: future of bioenergy in Iran. Renew Sust Energ Rev. 2011;
15(4): 1918-1927.
92. Raeesossadati MJ, Ahmadzadeh H, McHenry MP, Moheimani NR. CO2 bioremediation by
microalgae in photobioreactors: impacts of biomass and CO2 concentrations, light, and
temperature. Algal Res. 2014; 6: 78-85.
93. Madadi R, Pourbabaee AA, Tabatabaei M, Zahed MA, Naghavi MR. Treatment of
petrochemical wastewater by the green algae Chlorella vulgaris. Int J Environ Res. 2016; 10
(4): 555-560.
94. Najafi G, Ghobadian B, Yusaf TF. Algae as a sustainable energy source for biofuel production
in Iran: a case study. Renew Sustainable Energy Rev. 2011; 15(8): 3870-3876.
95. Abdoli A, Enshaeieh M, Nahvi I, Madani M. Isolation of oleaginous yeasts and optimization
of lipid production using taguchi design. New Cell Mol Biotechnol J. 2012; 4(14): 13-20.
96. Ghasemi L, Samadlouie H, Jalali H, Gharanjik S. Isolation and identification of Candida
orthopsilosi SAGSGC as oleaginous yeast in perch fish by using ribosomal gene and
optimization of oil and biomass production. J Agr Food Chem. 2017; 14(70): 1-12.
97. Pourbabaee A, Mondaniizadeh M. Single cell oil production from petroleum sludge by
native yeast strains. J Rene Energy Environ. 2014; 2: 19.
98. Enshaeieh M, Abdoli A, Madani M. Single cell oil (SCO) production by Rhodotorula
mucilaginosa and its environmental benefits. J Agr Sci Tech. 2015; 17(2): 387-400.
99. Enshaeieh M, Abdoli A, Nahvi I, Madani M. Bioconversion of different carbon sources in to
microbial oil and biodiesel using oleaginous yeasts. J Biol Todays World. 2012; 1(2): 82-92.
100. Shafiei N, Beheshti MK, Madani M. Isolation, optimization, and investigation of production
of linoleic acid in Aspergillus niger. Qom Univ Med Sci J. 2016; 10(6): 24-31.
101. Mohammadi Nasr M, Nahvi I, Biria D, Mirbagheri M. Optimization of culture media for
enhancing gamma-linolenic acid production by Mucor hiemalis. Biological J Microorganism.
2016; 4(16): 25-31.
102. Nasr MM, Nahvi I, Keyhanfar M, Mirbagheri M. The effect of carbon and nitrogen sources
on the fatty acids profile of Mortierella vinacea. Biological J Microorganism. 2017; 5(20): 1