توسعه یک رویکرد ترکیبی سناریومحور جهت ارزیابی حالتهای مختلف حمل و نقل با در نظر داشتن مولفههای مکانیکی، پایداری، تابآوری و چابکی
Subject Areas : Smart & Advanced Materialsbehzad shahram 1 , علی نادران 2 * , Hasan Javanshir 3
1 - گروه مهندسی عمران، دانشکده عمران، معماری و هنر، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار گروه مهندسی عمران، دانشکده عمران، معماری و هنر، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی
3 - عضو هیت علمی
Keywords: انتخاب حالت حمل و نقل, مولفههای مکانیکی, پایداری , تابآوری, چابکی, اکسیژنساز,
Abstract :
یکی از مسائل مهم در زنجیرههای تأمین، انتخاب حالت حمل و نقل صحیح در جابجاییها میباشد. معیارها و مولفههای متعددی بر این موضوع تاثیرگذار هستند که در زنجیرههای تأمین مختلف این موضوع متفاوت میباشد. هدف مقاله حاضر ارزیابی حالتهای حمل و نقل در زنجیره تأمین تجهیزات پزشکی مبتنی بر معیارهای مکانیکی، پایداری، چابکی و تابآوری است در شرایط عدم قطعیت میباشد. از آنجا که عدم قطعیت در شرایط مختلف تاثیرگذار است در این راستا، ارزیابی حالتهای حمل و نقل در سناریوهای گوناگون میبایست صورت گیرد که به همین جهت از روش بهترین بدترین فازی تصادفی (SFBWM) برای این موضوع و ارزیابی شاخصها استفاده شده است. یافتهها نشان میدهد که هزینه، سرعت، ظرفیت حمل، انعطافپذیری و اقتصاد ملی مهمترین شاخصها میباشند. نوآوری اصلی این مطالعه ارائه رویکرد توسعه یافته مبتنی بر سیستم استنتاج فازی (FIS) میباشد که در این روش توسعهیافته، شاخصهای ارزیابی به صورت سلسله مراتبی و وزندار استفاده شدهاند و روش سیستم استنتاج فازی وزندار سلسلهمراتبی (HWFIS) ارائه شده است. یافتههای این بخش نیز نشان میدهد که در حمل و نقل زنجیره تأمین تجهیزات بیمارستانی مبتنی بر معیارهای مکانیکی، پایداری، چابکی و تابآوری، هواپیما کاراترین گزینه میباشد.
Abbasi, S., & Choukolaei, H. A. (2023). A systematic review of green supply chain network design literature focusing on carbon policy. Decision Analytics Journal, 6, 100189.
Amirkhani, A., Nasiriyan-Rad, H., & Papageorgiou, E. I. (2020). A novel fuzzy inference approach: neuro-fuzzy cognitive map. International Journal of Fuzzy Systems, 22, 859-872
Centobelli, P., Cerchione, R., & Ertz, M. (2020). Agile supply chain management: where did it come from and where will it go in the era of digital transformation?. Industrial Marketing Management, 90, 324-345.
ForouzeshNejad AA. Leagile and sustainable supplier selection problem in the industry 4.0 era: a case study of the medical devices using hybrid multi-criteria decision making tool. Environ Sci Pollut Res. 2023;30(5):13418–37.
30 مجله پژوهش و کاربرد در مکانیک دوره 14 شماره2 سال 1403 (2024) 31-14
Fu, W., Jing, S., Liu, Q., & Zhang, H. (2023). Resilient supply chain framework for semiconductor distribution and an empirical study of demand risk inference. Sustainability, 15(9), 7382.
Golan, M. S., Trump, B. D., Cegan, J. C., & Linkov, I. (2021). The vaccine supply chain: a call for resilience analytics to support COVID-19 vaccine production and distribution. In COVID-19: systemic risk and resilience (pp. 389-437). Cham: Springer International Publishing.
Gomes, K. R., Perera, H. N., Thibbotuwawa, A., & Sunil-Chandra, N. P. (2023). Comparative analysis of lean and agile supply chain strategies for effective vaccine distribution in pandemics: A case study of COVID-19 in a densely populated developing region. Supply Chain Analytics, 3, 100022.
Khan, S. A. R., Yu, Z., Golpira, H., Sharif, A., & Mardani, A. (2021). A state-of-the-art review and meta-analysis on sustainable supply chain management: Future research directions. Journal of Cleaner Production, 278, 123357.
Liao H, Qin R, Wu D, Yazdani M, Zavadskas EK. Pythagorean fuzzy combined compromise solution method integrating the cumulative prospect theory and combined weights for cold chain logistics distribution center selection. Int J Intell Syst. 2020;35(12):2009–31.
Mangla, S. K., Kazançoğlu, Y., Yıldızbaşı, A., Öztürk, C., & Çalık, A. (2022). A conceptual framework for blockchain‐based sustainable supply chain and evaluating implementation barriers: A case of the tea supply chain. Business strategy and the environment, 31(8), 3693-3716.
Mishra, A., Dutta, P., & Gottipalli, N. (2024). An optimization model for the downstream supply chain network, considering consolidated warehouses and the selection of transportation mode. International Journal of Productivity and Performance Management, 73(3), 912-942.
Mogale, D. G., Cheikhrouhou, N., & Tiwari, M. K. (2020). Modelling of sustainable food grain supply chain distribution system: a bi-objective approach. International Journal of Production Research, 58(18), 5521-5544.
Muneeb SM, Asim Z, Hajiaghaei-Keshteli M, Abbas H. A multi-objective integrated supplier selection-production-distribution model for re-furbished products: Towards a circular economy. Renew Sustain Energy Rev. 2023; 175:113156.
Nag K, Helal M. A Fuzzy TOPSIS approach in multi-criteria decision making for supplier selection in a pharmaceutical distributor. In: 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE; 2016. p. 1126–30.
Nayeri S, Khoei MA, Rouhani-Tazangi MR, GhanavatiNejad M, Rahmani M, Tirkolaee EB. A data-driven model for sustainable and resilient supplier selection and order allocation problem in a responsive supply chain: A case study of healthcare system. Eng Appl Artif Intell. 2023; 124:106511.
Pournader, M., Ghaderi, H., Hassanzadegan, A., & Fahimnia, B. (2021). Artificial intelligence applications in supply chain management. International Journal of Production Economics, 241, 108250.
Sazvar Z, Tavakoli M, Ghanavati-Nejad M, Nayeri S. Sustainable-resilient supplier evaluation for high-consumption drugs during COVID-19 pandemic using a data-driven decision-making approach. Sci Iran. 2022;
Shamsuzzoha A, Ndzibah E, Kettunen K. Data-driven sustainable supply chain through centralized logistics network: Case study in a Finnish pharmaceutical distributor company. Curr Res Environ Sustain. 2020; 2:100013.
Vats P, Soni G, Rathore APS, Shukla OJ. Grey-based decision-making approach for the selection of distributor in a supply chain. Int J Intell Enterp. 2022;9(2):207–25.
Wahyuni R, Defit S, Nurcahyo GW. The Multi Attribute Utility Theory (Death) Method In The Decision Of The Distributor Distributor Selection (Metode Multi Attribute Utility Theory (Maut) Dalam Keputusan Pemilihan Distributor Barang). J KomtekInfo. 2020;7(2):84–100.
31 مجله پژوهش و کاربرد در مکانیک دوره 14 شماره2 سال 1403 (2024) 31-14
Wang Y, Yang C, Hou H. Risk management in perishable food distribution operations: A distribution route selection model and whale optimization algorithm. Ind Manag Data Syst. 2020;120(2):291–311.
Zahedi, A., Salehi-Amiri, A., Hajiaghaei-Keshteli, M., & Diabat, A. (2021). Designing a closed-loop supply chain network considering multi-task sales agencies and multi-mode transportation. Soft Computing, 25, 6203-6235.
Zhao P, Ji S, Xue Y. An integrated approach based on the decision-theoretic rough set for resilient-sustainable supplier selection and order allocation. Kybernetes. 2023;52(3):774–808.