Design and investigation of TiO2 –SiO2 thin films on AISI 316L stainless steel for tribological properties and corrosion protection
Subject Areas : Materials synthesis and charachterization
1 - Department of Engineering, Shahrekord University, Shahrekord, Iran.
Keywords: Sol-gel method, TiO2–SiO2 nanocomposite films, depth-sensing indentation technique, photocathodic protection effect,
Abstract :
The TiO2–SiO2 thin films were deposited on AISI 316L stainless steel via sol-gel method. Then, the effect of the added amount of SiO2 on the structure, morphology and mechanical properties of the films and corrosion behavior of AISI 316L stainless steel substrate were investigated. So, X-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, depth-sensing indentation technique supporting micro-scratch mode and potentiodynamic polarization test were used. It was observed that the appropriate amount SiO2 addition into TiO2 film not only decreased the particle size of TiO2–SiO2 crystal but also could help to improve the surface quality. The mechanical and tribological properties of the films were found to be improved in the range of 10–15%mol SiO2 addition compared with the pure TiO2. The minimum root mean square value was obtained from the film with a silica content of 10%mol. In addition, the corrosion behavior of AISI 316L stainless steel was improved by adding 15%mol SiO2. Under UV illumination conditions, photo-generated electrons accumulated in this film could perfectly protect the substrate photocathodically.
1. G. X. Shen, Y. C. Chen and C. J. Lin, Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method, Thin Solid Films, Vol. 489, 2005, pp. 130.
2. M. Lia, S. Luo, P. Wu and J. Shen, Photocathodic protection effect of TiO2 films for carbon steel in 3% NaCl solutions, Electrochim. Acta, Vol. 50, 2005, pp. 3401.
3. Z. Liu, Y. Dong, Z. Chu, Y. Yang, Y. Li and D. Yan, Corrosion behavior of plasma sprayed ceramic and metallic coatings on carbon steel in simulated seawater, Mater. Design, Vol. 52, 2013, pp. 630.
4. D. S. R. Krishna, Y. Sun and Z. Chen, Magnetron sputtered TiO2 films on a stainless steel substrate: Selective rutile phase formation and its tribological and anti-corrosion performance, Thin Solid Films, Vol. 519, 2011, pp. 4860.
5. S. M. Madani, M. Ehteshamzadeh and H. H. Rafsanjani, Investigation of the microstructure and corrosion performance of a nanostructured titania-containing hybrid silicate film on mild steel, Thin Solid Films, Vol. 519, 2010, pp. 145.
6. T. K. Rout, N. Bandyopadhyay, R. Narayan, N. Rani and D. K. Sengupta, Performance of titania–silica composite coating on interstitial-free steel sheet, Scripta Mater, Vol. 58, 2008, pp. 473.
7. S. Vives and C. Meunier, Mixed SiO2–TiO2 (1:1) sol–gel films on mild steel substrates: Sol composition and thermal treatment effects, Surf. & Coat. Tech, Vol. 202, 2008, pp. 2374.
8. T. Cetinkaya, L. Neuwirthová, K. Kutláková, V. Tomásek and H. Akbulut, Synthesis of nanostructured TiO2/SiO2 as an effective photocatalyst for degradation of acid orange, Appl. Surf. Sci, Vol. 279, 2013, pp. 384.
9. C. Beck, T. Mallat, T. Bu¨rgi and A. Baiker, Nature of Active Sites in Sol–Gel TiO2–SiO2 Epoxidation Catalysts, J. Catal, Vol. 204, 2001, pp. 428.
10. S. M. Jung, P. Grange, TiO2–SiO2 mixed oxide modified with H2SO4: II. Acid properties and their SCR reactivity, Appl. Catal. A-Gen. Vol. 228, 2002, pp. 65.
11. J. Wang, C. Lua and J. Xiong, Self-cleaning and depollution of fiber reinforced cement materials modified by neutral TiO2/SiO2 hydrosol photoactive coatings, Appl. Surf. Sci., Vol. 298, 2014, pp. 19.
12. B. S. Boroujeny, A. Afshar v and A. Dolati, Photoactive and self-cleaning TiO2–SiO2 thin films on 316L stainless steel, Thin Solid Films, Vol. 520, 2012, pp. 6355.
13. D. Zhu and T. Kosugi, Thermal conductivity of GeO2/SiO2 and TiO2/SiO2 mixed glasses, J. Non-Cryst. Solids, Vol. 202, 1996, pp. 88.
14. M. Aizawa, Y. Nosaka and N. Fujii, Preparation of TiO2/SiO2 glass via sol-gel process containing a large amount of chlorine, J. Non-Cryst. Solids, Vol. 168, 1994, pp. 49.
15. X. Gao and I. E. Wachs, Titania–silica as catalysts: molecular structural characteristics and physico-chemical properties, Catal. Today, Vol. 51, 1999, pp. 233.
16. M. Fini, N. N. Aldini, P. Torricelli, G. Giavaresi, V. Borsari, H. Lenger, J. Bernauer, R. Giardino, R. Chiesa and A. Cigada, A new austenitic stainless steel with negligible nickel content: an in vitro and in vivo comparative investigation, Biomaterials, Vol. 24, 2003, pp. 4929.
17. J. A. Disegi and L. Eschbach, Stainless steel in bone surgery, Injury, Vol. 31, 2000, pp. D2.
18. Fujishima, T. N. Rao and D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C, Vol. 1, 2000, pp. 1.
19. G. Lassaletta, A. Fernandez, J. P. Espinos, A.R. Gonzalez, Spectroscopic characterization of quantum-sized TiO2 supported on silica: influence of size and TiO2-SiO2 interface composition, J. Phys. Chem., Vol. 99, 1995, pp. 1484.
20. J. A. Mejias, V. M. Jimenez, G. Lassaletta, A. Fernandez, J. P. Espinos and A. R. Gonzalez, Interpretation of the Binding Energy and Auger Parameter Shifts Found by XPS for TiO2 Supported on Different Surfaces, J. Phys. Chem, Vol. 100, 1996, pp. 16255.
21. W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res, Vol. 7, 1992, pp. 1564.
22. H. Tang, F. Levy, H. Berger and P. E. Schmid, Urbach tail of anatase TiO2, Phys. Rev, Vol. 52, 1995, pp. 7771.
23. B. D. Cullity, Elements of X-ray Diffraction, Wesley Pub, Note Dame, 1978.
24. K. Y. Jung and S. B. Park, Anatase-phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene, J. Photochem. Photobiol. A: Chem, Vol. 127, 1999, pp. 117.
25. G. Xu, Z. Zheng, Y. Wu and N. Feng, Effect of silica on the microstructure and photocatalytic properties of titania, Ceram. Int., Vol. 35, 2009, pp. 1.
26. M. Machida, K. Norimoto, T. Watanabe, K. Hashimoto and A. Fujishima, The effect of SiO2 addition in super-hydrophilic property of TiO2 photocatalyst, J. Mater. Sci, Vol. 34, 1999, pp. 2569.
27. H. Dong and T. Bell, Designer surfaces for titanium components, Anti-Corros. Method M, Vol. 46, 1999, pp. 338.
28. Leyland and A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behavior, Wear, Vol. 246, 2000, pp. 1.
29. P. Evans, T. English, D. Hammond, M. E. Pemble and D. W. Sheel, The role of SiO2 barrier layers in determining the structure and photocatalytic activity of TiO2 films deposited on stainless steel, Appl. Catal. A-Gen, Vol. 321, 2007, pp. 140.
30. L. Bamoulid, F. Benoît-Marquié, L. Aries, A. Guenbour, A. B. Bachir, M. T. Maurette, F. Ansart and S. El Hajjaji, Investigations on composition and morphology of electrochemical conversion layer/titanium dioxide deposit on stainless steel, Surf. & Coat. Tech, Vol. 201, 2006, pp. 2791.
31. M. Itoh, H. Hattori and K. Tanabe, The acidic properties of TiO2-SiO2 and its catalytic activities for the amination of phenol, the hydration of ethylene and the isomerization of butane, J. Catal, Vol. 35, 1974, pp. 225.
32. M. Zhang, L. Shi, S. Yuan, Y. Zhao and J. Fang, Synthesis and photocatalytic properties of highly stable and neutral TiO2/SiO2 hydrosol, J. Colloid Interface Sci, Vol. 330, 2009, pp. 113.