بهبود کنترلکنندة PI چندمتغیرة بهرة بالا برای یک سیستم نامنظم بهکمک الگوریتم ژنتیک
محورهای موضوعی : سیستم های کنترلسیدعابد حسینی 1 * , محمدباقر نقیبی سیستانی 2
1 - دانشگاه فردوسی مشهد
2 - دانشگاه فردوسی مشهد
کلید واژه: الگوریتم ژنتیک, کنترل کننده خطی, پارامتر مارکوف,
چکیده مقاله :
این مقاله یک ساختار بهینة برای کنترلکنندة PI چندمتغیرة بهرة بالا برای یک سیستم نامنظم به کمک الگوریتم ژنتیک ارایه میدهد. کنترلکنندههای PI بهرة بالا منجر به تجزیة مجانبی به مودهای سریع و کُند در سیستمی حلقه بسته با ویژگی منحصر به فرد میشوند. مودهای کُند سیستم، بهطور مجانبی کنترلناپذیر و رؤیتناپذیر میشوند و بنابراین در رفتار ورودی و خروجی نقشی ندارند. از این رو پاسخ حلقه بسته تنها از قطبهای سریع متأثر بوده و بنابراین پاسخدهی سیستم سریع خواهد بود. طراحی این کنترلکننده به اولین پارامتر مارکوف سیستم چندمتغیره، یعنی ماتریس CB بستگی دارد؛ در صورتیکه ماتریس CB رتبة کامل نباشد، از ماتریس اندازهگیری M با فیدبک داخلی استفاده میشود. در این ساختار، ماتریس اندازهگیری بهکمک الگوریتم ژنتیک طوری انتخاب میشود تا سیستم حلقه بسته پایدار و تداخل بین خروجیها حداقل شود. این تحقیق بر روی دو نمونه سیستم پیادهسازی شده است. از مقایسه نتایج مشاهده میشود، پاسخ زمانی کنترلکنندة PI بهرة بالا بهکمک الگوریتم ژنتیک بهتر از نتایج مقایسه با روشهای دیگر است.
This paper describes an optimal design for multivariable PI controller with a high gain structure for an irregular system by genetic algorithm. PI controllers with a high gain structure leads to the asymptotic decomposition of the fast and slow modes in the closed loop system that have unique characteristics. The slow modes are asymptotically uncontrollable and unobservable; therefore, they have not role in input and output behavior. The closed-loop response is affected only from rapid poles; therefore, the system response will have quick behavior. An essential requirement of this design is that the first Markov parameter of multivariable system (the matrix product CB) must have full rank. If the CB matrix is not full rank, the measurement matrix (M) is used with internal feedback. In this structure, the measurement matrix is chosen using genetic algorithm in order to reach the stable closed-loop system and minimize interference between outputs. The research is implemented on the two kind of different systems. The results show that the response time of PI controller with a high gain structure by genetic algorithms has good behavior in comparison with other methods.
[1] Q.G. Wang, C. Ye, W.J. Cai, C.C. Hang, "PID control for multivariable processes", Springer-Verlag Berlin Heidelberg, 2008.
[2] H. Zhang, B. Liu, "Fuzzy modeling and fuzzy control", New York: Springer-Verlag, 2006.
[3] P. Acarnley, Y. AI-Sadiq, "Tuning PI speed controllers for electric drives using simulated annealing", Proceedings of the IEEE/ISIE, Vol. 4, pp. 1131–1135, 2002.
[4] R.A. Krohling, J.P. Rey, "Design of optimal disturbance rejection PID controllers using genetic", IEEE Trans. on Evolutionary Computation, Vol. 5, pp. 78-82, Feb. 2001.
[5] A. Visioli, "Tuning of PID controllers with fuzzy logic", Proceedings Control Theory and Applications, Vol. 148, pp. 1-8, Jan. 2001.
[6] A.G.J. MacFarlanne, "Frequency response methods in control systems", New York, IEEE Press, 1979.
[7] D.Q. Mayne, "Sequential design of linear multivariable systems", Proceedings of the Institution of Electrical Engineers, Vol. 126, No. 6, pp. 568-572, June 1979.
[8] P.L. Falb, W.A. Wolovich, "On the decoupling of multivariable systems", Proc. JACC, Philadelphia, Pennsylvania, pp. 791-796, 1967.
[9] H.H. Rosenbrock, "Computer-aided control system design", New York: Academic Press, 1974.
[10] Z. Bingul, "A new PID tuning technique using differential evolution for unstable and integrating processes with time delay", Springer-Verlag Berlin Heidelberg, LNCS, Vol. 3316, pp. 254–260, 2004.
[11] R.A. Krohling, J.P. Rey, "Design of optimal disturbance rejection PID controllers using genetic algorithm", IEEE Trans. on Evolutionary Computation, Vol. 5, pp.78–82, Feb 2001.
[12] Y. Mitsukura, T. Yamamoto, M. Kaneda, "A design of self-tuning PID controllers using a genetic algorithm", Proceedings of the American Control Conference, San Diego, CA, pp. 1361–1365, June 1999.
[13] A. Khaki-sedigh, "Analysis and design of multivariable control systems", KNTU Publication, 2012 (in Persian).
[14] C.C. Yu, W.L. Luyben, "Design of multi loop SISO controllers in multivariable processes", Industrial Eng. Chem. Fundam, Vol. 25, pp. 344-350, 1986.
[15] Z.J. Palmor, Y. Halevi, N. Krasney, "Automatic tuning of decentralized PID controllers for TITO processes", Vol. 31, No. 7, pp. 1001-1010, July 1995.
[16] A.P. Loh, C.C. Hang, C.K. Quek, V.U. Vasnani, "Auto-tuning of multi-loop proportional-integral controllers using relay feedback", Ind. Eng. Chem. Res., Vol. 32, pp. 1102–1107, 1993.
[17] Y.R. Huang, Y.M.Tian, L.G. Qu, "Design of model driven cascade PID controller using quantum neural network", Advanced Materials Research, Vol. 108-111, pp. 1486-1491, May 2010.
[18] K.J. Astrom, T. Hagglund, "Revisiting the Ziegler-Nichols step response method for PID control", Journal of Process Control, Vol. 14, No. 6, pp. 635-650, Aug. 2004.
[19] J.G. Ziegler, N.B. Nichols, "Optimum settings for automatic controllers", Trans. of the ASME, Vol. 64 pp. 759–768., Nov 1942.
[20] K.L. Chien, J.A. Hrones, J.B. Reswick, "On the automatic control of generalized passive systems", Trans. of ASME, Vol. 74, pp. 175-185, 1952.
[21] T. Kitamori, "A Method of control system design based upon partial knowledge about controlled processes", Trans. SICE Japan, Vol. 15, No. 4, pp. 549-555, 1979.
[22] W.J. Locken, "Digital multivariable tracker control laws for the KC-135A", Master's thesis, December 1983.
[23] D.B. Ridegly, S.S. Banda, J.J. D'Azzo, "Decoupling of high-gain multivariable tracking systems", Journal of Guidance, Control and Dynamics, Vol. 8, No. 1, pp. 44-49, Feb 1985.
[24] D.J.F. Hopper, "Active control of V/Stol aircraf", PhD Thesis, Department of Aeronautical and Mechanical Engineering, The University of Salford, April 1990.
[25] J.J.D’Azzo, C.H. Houpis, "Linear control system analysis and design conventional and modern", Edition, New York: McGraw-Hill, 1995.
[26] R.L. Haupt, S.E. Haupt, "Practical genetic algorithms", Edition, John Wiley and Sons, Inc, pp. 189-190, 2004.
[27] G. Tao, S. Chen, X. Tang, S.M. Joshi, "Adaptive control of systems with actuator failures", Springer-Verlag, London, 2004.
[28] J. Guo, Y. Liu, G. Tao, "Multivariable MRAC with state feedback for output tracking", Proceedings of the Conference on American Control, pp. 592-597, St. Louis, MO, USA, June 2009.
_||_