کنترل کننده تطبیقی-عصبی در جراحی رباتیک قلب در حال تپش بر اساس مدل ارتجاعی-چسبندگی بافت
محورهای موضوعی : سیستمهای رباتیکستاره رضاخانی 1 , مهدی علیاری شوره دلی 2 , اعظم قاسمی 3
1 - دانشگاه آزاد اسلامی واحد نجف آباد
2 - دانشگاه خواجه نصیر الدین طوسی
3 - دانشگاه آزاد اسلامی واحد نجف آباد
کلید واژه: چسبندگی, نیرو, کنترل موقعیت, کنترل عصبی- تطبیقی, مدل ارتجاعی,
چکیده مقاله :
در این مقاله، مشکل جبران حرکات قلب در سه راستا با استفاده از طراحی کنترل کنندهی موازی نیرو و موقعیت حل میگردد. کنترل کننده موقعیت با استفاده از روش تطبیقی-موجک جهت جبران حرکات سه بعدی بافت و مواجهه با نامعینیهای ساختاری در معادلات ربات، طراحی میگردد و کنترل نیرو نیز به صورت ضمنی، انجام میشود. مدل برهم کنش بافت قلب و ابزار نهائی ربات، به صورت ارتجاعی- چسبندگی در نظر گرفته شده است. در اثبات پایداری کنترل کننده، از قانون لیاپانف و لم باربالت استفاده میشود. بدین منظور یک تابع لیاپانف مثبت معین در نظر گرفته شده و در اثبات پایداری استفاده شده است. شبیه سازیها بر روی ربات D2M2 صورت گرفته و نشاندهنده کارایی کنترل کننده میباشد. تست مقاوم بودن عملکرد نیز در مواجه با بافتهای مختلف انجام و نتایج ارائه گردیده است.
In this paper, the problem of 3D heart motion in beating heart surgery is resolved by proposing a parallel force-motion controller. Motion controller is designed based on neuro-adaptive approach to compensate 3D heart motion and deal with uncertainity in dynamic parameters, while an implicit force control is implemented by considering a viscoelastic tissue model. Stability analysis is proved through Lypanov’s stability theory and Barballet’s lemma. Simulation results, for D2M2 robot, which is done in nominal case and viscoelastic parameter mismatches demonstrate the robust performance of the controller.
[1] V. Falk, "Manual control and tracking-a human factor analysis relevant for beating heart surgery", The Annals of Thoracic Surgery, Vol. 74,No. 2, pp. 624-628, 2002.
[2] A.M. Okamura, L.N. Verner, C. E. Reiley, M. Mahvash, "Haptics for robot-assisted minimally invasive surgery", In 13th Int. Sym. of Rob. Res. (ISRR’07), (Hiroshima, Japan), pp. 26-29, 2007.
[3] M. Lemma, A. Mangini, A. Redaelli, F. Acocella, "Do cardiac stabilizers really stabilize? experimental quantitative analysis of mechanical stabilization", Interactive CardioVascular and Thoracic Surgery, Vol. 4, pp.222-226, 2005.
[4] Y. Nakamura, K. Kishi, H. Kawakami, "Heartbeat synchronization for robotic cardiac surgery", In IEEE Int. Con. on Rob. and Auto. (ICRA’01), (Seoul, Korea), pp. 2014–2019,2001.
[5] R. Ginhoux, J. Gangloff, M. De Mathelin, L. Soler, M.M. Arenas Sanchez, J. Marescaux, "Active filtering of physiological motion in robotized surgery using predictive control", IEEE Trans. on Rob., Vol. 21, 2005.
[6] T. Ortmaier, M. Groger, D.H. Boehm, V. Falk, G. Hirzinger, "Motion estimation in beating heart surgery", IEEE Trans. on Bio. Eng., Vol. 52, pp. 1729–1740, 2005.
[7] B. Cagneau, N. Zemiti, D. Bellot, G. Morel, "Physiological motion compensation in robotized surgery using force feedback control", In IEEE Int. Con. on Ro. and Auto. (ICRA’07), (Rome, Italy), pp. 1881–1886, 2007.
[8] O. Bebek, M. Cavusoglu, "Intelligent control algorithms for robotic-assisted beating heart surgery", IEEE Trans. on Robotics, Vo.l. 23, No. 3, pp. 468–480, 2007.
[9] R. Cortesao, P. Poignet, "Motion compensation for robotic-assisted surgery with force feedback", In IEEE Int. Con. on Rob. and Auto. (ICRA’09), (Kobe, Japan), pp. 3464–3469, 2009.
[10] Z. Zarrouk, A. Chemori, Ph. Poigeint, "Adaptive force feedback control for 3D compensation of physiological motion in beating heart surgery", In IEEE Int. Con. on Intel. Rob. and sys., (Taipei,Taiwan), pp. 1856–1861, 2010.
[11] A.M. Okamura, "Methods for haptic feedback in teleoperated robot-assisted surgery", Ind. Robot, Vol. 31, No. 6, pp. 499-508, 2004.
[12] S.G. Yuen, D.P. Perrin, N.V. Vasilyev, P.J. del Nido, R.D. Howe, "Force tracking with feed-forward motion estimation for beating heart surgery", IEEE Trans. on Robotics, Vol. 26, No.5, pp. 888-896, 2010.
[13]Y.C. Fung, Biomechanics: Mechanical properties of living tissue, Springer, 2nd Ed., 1993.
[14] Ch. Liu, Pedro Moreira, N. Zemiti, Ph. Poigent, "Force control for robotic-assisted beating heart surgery based on viscoelastic tissue model", 33rd IEEE Int. Con. on EBMS, (Massachusetts,USA), pp. 7054-7058, 2011.
[15] M.W. Spong, S. Hutchson, M. Vidysagar, Robot dynamics and control, Springer, 2nd Edition, 2006.
[16]] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics modeling, planning and control Springer,Verlag, London, 2009.
[17] F.L. Lewis, C.T. Abdallah, D.M. Dawson, Control of robot manipulators, Macmillan,USA, 2004.
[18] K.J. Astrom, B. Wittenmark, Adaptive control, Dover, 2nd Edition, 2008.
[19] J.J.E. Slotine W. Li, Applied nonlinear control, Prentice-Hall International Inc.,USA,1991.
_||_