روشی جدید جهت بخشبندی ضایعات مالتیپل اسکلروزیس (MS) در تصاویر MR مغزی
محورهای موضوعی : پردازش تصویر و ویدئوسیمین جعفری 1 , علیرضا کریمیان 2
1 - دانشگاه آزاد اسلامی، واحد نجفآباد
2 - دانشگاه اصفهان
کلید واژه: بخشبندی, ضایعات MS, تصاویر تشدید مغناطیسی (MRI), بیشینهسازی امید ریاضی (EM), مدل مخلوط گوسی (GMM),
چکیده مقاله :
بخشبندی ضایعات مالتیپل اسکلروزیس (MS) در تصاویر MR مغزی به منظور کمک به تشخیص و پیگیری این بیماری در سالهای اخیر مورد توجه قرار گرفته است. در این مطالعه از مدل ترکیب گوسی (GMM) برای قطعهبندی ضایعات MS در تصاویر MR استفاده شد. به منظور بهینهسازی GMM از الگوریتم بیشینهسازی امید ریاضی (EM) استفاده میشود اما این الگوریتم معمولاً به یک نقطه بهینه محلی همگرا میشود که برای رهایی از گیر افتادن در این نقطه، الگوریتم را از نقاط شروع متفاوت اجرا کرده و بهترین نتیجه ذخیره میشود که کاری زمانبر است. در این مقاله از استراتژی متفاوتی به منظور تسریع و افزایش دقت این الگوریتم استفاده شده است. همچنین به منظور کاهش میزان محاسبات و افزایش دقت الگوریتم EM، از الگوریتم Fast Trimmed-Likelihood استفاده شد. جهت اعتبارسنجی روش پیشنهادی، تصاویر ناحیهبندی شده به روش خودکار با تصاویر ناحیهبندی شده توسط دو فرد متخصص مقایسه شده است. نتایج حاصل نشان میدهد روش پیشنهادی با کسب رتبه 82% برای ضریب تشابه Dice، قابلیت این را دارد که با دقت بالایی ضایعات MS را تشخیص داده و بخشبندی نماید
Automatic segmentation of multiple sclerosis (MS) lesions in brain MRI has been widely investigated in recent years with the goal of helping MS diagnosis and patient follow-up. In this study we applied gaussian mixture model (GMM) to segment MS lesions in MR images. Usually, GMM is optimized using expectation-maximization (EM) algorithm. One of the drawbacks of this optimization method is that, it does not convergence to optimal maximum or minimum. Starting from different initial points and saving best result, is a strategy which is used to reach the near optimal. This approach is time consuming and we used another way to initiate the EM algorithm. Also, FAST- Trimmed Likelihood Estimator (FAST-TLE) algorithm was applied to determine which voxels should be rejected. The automatically segmentation outputs were scored by two specialists and the results show that our method has capability to segment the MS lesions with Dice similarity coefficient (DSC) score of 0.82.
[1] X. Lladó, A. Oliver, M. Cabezas, J. Freixenet, J.C. Vilanova, A. Quiles, L. Valls, L. Ramió-Torrentà, À. Rovira, "Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches", Information Sciences, Vol. 186, pp. 185-164, 2012.
[2] J.C. Souplet, C. Lebrun, N. Ayache, G. Malandain, "An automatic segmentation of T2-FLAIR multiple sclerosis lesions", In The MIDAS Journal-MS Lesion Segmentation (MICCAI 2008 Workshop), 2008.
[3] N. Subbanna, M. Shah, S. Francis, S. Narayanan, D. Collins, D. Arnold, T. Arbel, "MS lesion segmentation using Markov Random Fields", In Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention, London, UK, 2009.
[4] R. Khayati, M. Vafadust, F. Towhidkhah, M. Nabavi, "Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model", Computers in biology and medicine, Vol. 38, pp. 379-390, 2008.
[5] A.O. Boudraa, S.M.R. Dehak, Y.M. Zhu, C. Pachai, Y.G. Bao, J. Grimaud, "Automated segmentation of multiple sclerosis lesions in multispectral MR imaging using fuzzy clustering", Computers in biology and medicine, Vol. 30, pp. 23-40, 2000.
[6] B.R. Sajja, S. Datta, R. He, M. Mehta, R.K. Gupta, J.S. Wolinsky, P.A. Narayana, "Unified approach for multiple sclerosis lesion segmentation on brain MRI", Annals of Biomedical Engineering, Vol. 34, pp. 142-151, 2006.
[7] M.S. Cohen, R.M. DuBois, M.M. Zeineh, "Rapid and effective correction of RF inhomogeneity for high field magnetic resonance imaging", Human Brain Mapping, Vol. 10, pp. 204-211, 2000.
[8] W.M. Wells III, W.E.L. Grimson, R. Kikinis, F.A. Jolesz, "Adaptive segmentation of MRI data", IEEE Trans. on Medical Imaging, Vol. 15, pp. 429-442, 1996.
[9] A.P. Dempster, N.M. Laird, D.B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm", Journal of the Royal Statistical Society. Series B (Methodological), pp. 1-38, 1977.
[10] D. García-Lorenzo, S. Prima, D.L. Arnold, D.L. Collins, C. Barillot, "Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis", IEEE Trans. on Medical Imaging, pp. 1455-1467, 2011.
[11] N. Neykov, P. Filzmoser, R. Dimova, P. Neytchev, "Robust fitting of mixtures using the trimmed likelihood estimator", Computational Statistics & Data Analysis, Vol. 52, pp. 299-308, 2007.
[12] D. García-Lorenzo, S. Prima, S.P. Morrissey, C. Barillot, "A robust Expectation-Maximization algorithm for Multiple Sclerosis lesion segmentation", In MICCAI Workshop: 3D Segmentation in the Clinic: A Grand Challenge II, MS lesion segmentation, 2008.
[13] F. Barkhof, M. Filippi,D.H. Miller, P. Scheltens, A. Campi, C.H. Polman, G. Comi, H.J. Ader, N. Losseff, J. Valk, "Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis", Brain, Vol. 120, pp. 2059-2069, 1997.
_||_