یک الگوریتم بهبودیافته مسیریابی در شبکههای هوشمند اینترنت اشیاء با گرههای سیار
ذکیه شریفیان
1
(
دانشکده مهندسی کامپیوتر- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
)
بهرنگ برکتین
2
(
مرکز تحقیقات کلان داده- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
)
آلفونسو آریزا کوئینتانا
3
(
دانشکده مهندسی مخابرات- دانشگاه مالاگا، مالاگا، اسپانیا
)
زهرا بهشتی
4
(
مرکز تحقیقات کلان داده- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
)
فرامرز صافی اصفهانی
5
(
دانشکده مهندسی کامپیوتر- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
)
کلید واژه: مسیریابی, کیفیت سرویس, شبکه هوشمند, تاخیر انتها به انتها, اینترنت اشیاء, نرخ تحویل بسته,
چکیده مقاله :
اینترنت اشیاء (IoT)، بنابر ویژگیهای متفاوت و با توجه به جدید بودن فناوریها و استانداردهای مربوطه، با چالشهای مختلفی مواجه است. یکی از مهمترین و اساسیترین چالشها، پروتکلهای مسیریابی در شبکههای ثابت و سیار و بهطور دقیقتر بهینهسازی و ارتقای کیفیت سرویس آن مربوط میشود. در این مقاله، یک پروتکل مسیریابی منعطف، مقیاسپذیر و کارآمد به نام MLOADng-AT برای غلبه بر چالشهای مسیریابی در سناریوهای سیار معرفی شده است. در MLOADng-AT، اولاً، با استفاده از پیام سلام، اطلاعات مربوط به پارامترهای کیفیت لینک و ویژگیهای گرههای سیار تا دو گام بین گرههای ثابت و سیار جمعآوری میشود. علاوه بر این، در صورت خرابی مسیر، عملیات بازیابی بدون اجرای مجدد فرآیند مسیریابی طراحی شده که تاخیر مسیریابی شبکه را کاهش میدهد. MLOADng-AT میتواند با حفظ و بهبود پارامترهای کیفیت خدمات سرویس (QoS) با پیچیدگی بسیار کم سازگار شود. در نهایت، در شرایط نزدیک به دنیای واقعی به ویژه برای شبکههای سیار، پروتکل پیشنهادی میتواند بهطور موثر منجر به حفظ و بهبود QoS شود. نتایج شبیهسازی بر اساس طراحی و آزمودن چندین سناریو نشان میدهد که پارامترهای تأخیر انتها به انتها (EED) و نرخ تحویل بسته (PDR) در روش پیشنهادی نسبت به سایر روشهای مورد مقایسه عملکرد و بهبود مناسبی ایجاد کرده است. برای فضای با ابعاد 400×200 مترمربع مقادیر بهدست آمده پارامترهای EED و PDR به ترتیب برابر 0011/0 ثانیه و 477/98 درصد و همچنین برای سناریوهای اجرا شده در فضای 800×400 مترمربع مقادیر بهدست آمده پارامترهای EED و PDR به ترتیب برابر 0059/0 ثانیه و 167/86 درصد است.
چکیده انگلیسی :
The internet of things (IoT) faces various challenges due to its different characteristics and due to the novelty of related technologies and standards. The existence of these different and at the same time new problems has drawn the attention of many scientific researchers toward this new technology. One of the most important and fundamental challenges is related to the topic of routing protocols in static and mobile networks, and more precisely, optimizing and improving the quality of service of it. In this work, a novel flexible, scalable, and efficient routing protocol named MLOADng-AT (mobile lightweight on-demand ad hoc distance vector routing protocol– analytic hierarchy process echnique for order of preference by similarity to ideal solution) has been introduced to overcome the routing challenges in mobile scenarios. Using MLOADng-AT, firstly, taking advantage of the HELLO message, information about link quality parameters and mobility characteristics up to two hops is exchanged among static and mobile nodes. Moreover, it supports an error recovery path without rerunning a new routing process that noticeably decreases the network routing delay. MLOADng-AT can be easily adapted to any quality of service (QoS) parameter with very low complexity which is very important for a delay-sensitive IoT-based network. Finally, in case of noisy conditions especially for mobile networks, the proposed protocol can be efficiently used in low-quality links. Simulation results based on several scenarios depicted that end-to-end delay (EED) and packet delivery ratio (PDR) parameters significantly improved in the proposed method compared to other similar methods. For the area with dimensions of 400 x 200 m2, the obtained values of the EED and PDR parameters are respectively 0.0011 seconds and 98.47%, and also for the scenarios implemented in the area of 800 x 400 m2, the achieved results of the EED and PDR parameters are respectively 0.0059 seconds and 86.167%.
[1] A. Khanna, S. Kaur, "Evolution of internet of things (IoT) and its significant impact in the field of precision agriculture", Computers and Electronics in Agriculture, vol. 157, pp. 218–231, Feb. 2019 (doi: 10.1016/j.compag.2018.12.039).
[2] L. Portilla, K. Loganathan, H. Faber, A. Eid, J.GD. Hester, M.M. Tentzeris, M. Fattori, E. Cantatore, CH. Jiang, A. Nathan, G. Fiori, T. Ibn-Mohammed, T.D. Anthopoulos, V. Pecunia, "Wirelessly powered large-area electronics for the internet of things", Nature Electronics, vol. 6, no. 1, pp. 10–17, Dec. 2022 (doi: 10.1038/s41928-022-00898-5).
[3] Z.A. Almusaylim, A. Alhumam, N.Z. Jhanjhi, "Proposing a secure RPL based internet of things routing protocol: A review", Ad Hoc Networks, vol. 101, Article Number: 102096, Apr. 2020 (doi: 10.1016/j.adhoc.2020.102096).
[4] JJ. Marietta, B.C. Mohan, "A review on routing in internet of things", Wireless Personal Communications, vol. 111, pp. 209–233, Oct. 2019 (doi: 10.1007/s11277-019-06853-6).
[5] X. Yang, R. Feng, P. Xu, X. Wang, M. Qi, "Internet-of-things-augmented dynamic route planning approach to the airport baggage handling system", Computers and Industrial Engineering, vol. 175, Article Number: 108802, Jan. 2023 (doi: 10.1016/j.cie.2022.108802).
[6] J.V.V. Sobral, J.J. Rodrigues, R.A.L. Rabêlo, K. Saleem, V. Furtado, "LOADng-IoT: An enhanced routing protocol for internet of things applications over low power networks", Sensors, vol. 19, no. 1, Article Number: 150, Jan. 2019 (doi: 10.3390/s19010150).
[7] J. Tripathi, J.C.D. Oliveira, J.P. Vasseur, "Proactive versus reactive routing in low power and lossy networks: Performance analysis and scalability improvements", Ad Hoc Networks, vol. 23, pp. 121–144, Dec. 2014 (doi: 10.1016/j.adhoc.2014.06.007).
[8] P. Singh, "Comparative study between unicast and multicast routing protocols in different data rates using vanet", Proceeding of the IEEE/ICICT, pp. 278–284, Ghaziabad, India, Feb. 2014 (doi: 10.1109/ICICICT.2014.6781293).
[9] D.B. Johnson, D.A. Maltz, J. Broch, "DSR: The dynamic source routing protocol for multi-hop wireless ad hoc networks", Ad Hoc Networking, vol. 5, no. 1, pp. 139–172, Mar. 2001.
[10] C. Perkins, E. Belding-Royer, S. Das, "On-demand distance vector (AODV) routing", Proceeding of the IEEE/WMCSA, pp. 90-100, New Orleans, LA, USA, Feb. 1999 (doi: 10.16309/j.cnki.issn.1007-1776.2003.03.004).
[11] V.D. Park, M.S. Corson, "A highly adaptive distributed routing algorithm for mobile wireless networks", Proceedings of IEEE/INFOCOM’97, vol. 3, pp. 1405–1413, Washington, DC, USA, Aug. 2002 (doi: 10.1109/INFCOM.1997.631180).
[12] N. Gupta, R.S. Yadav, R.K. Nagaria, D. Gupta, A. Tripathi, O. Pandey, "Anchor-based void detouring routing protocol in three dimensional IoT networks", Computer Networks, vol. 227, Article Number: 109691, May 2023 (doi: 10.1016/j.comnet.2023.109691).
[13] JL. Fendji, C. Thron, A. Förster, "A multi-objective approach for wireless heterogeneous router placement in rural wireless mesh networks", Proceedeing of the ICISDC, pp. 43-55, Ebène City, Mauritius, Dec. 2020 (doi: 10.1007/978-3-030-70572-5_3).
[14] A. Bang, U.P. Rao, "Impact analysis of rank attack on RPL-based 6LoWPAN networks in internet of things and aftermaths", Arabian Journal for Science and Engineering, vol. 48, pp. 2489-2505, Oct. 2022 (doi: 10.1007/s13369-022-07342-y).
[15] T. Clausen, J. Yi, U. Herberg, "Lightweight on-demand ad hoc distance-vector routing-next generation (LOADng): protocol, extension, and applicability", Computer Networks, vol. 126, pp. 125–140, Oct. 2017 (doi: 10.1016/j.comnet.2017.06.025).
[16] J. Yi, T. Clausen, Y. Igarashi, "Evaluation of routing protocol for low power and lossy networks: LOADng and RPL", Proceeding of the IEEE/ICWISE, pp. 19–24, Subang, Malaysia, Jan. 2014 (doi: 10.1109/ICWISE.2013.6728773).
[17] J. Huang, Q. Duan, Y. Zhao, Z. Zheng, W. Wang, "Multicast routing for multimedia communications in the internet of things", IEEE Internet of Things Journal, vol. 4, no. 1, pp. 215–224, Feb. 2017 (doi: 10.1109/JIOT.2016.2642643).
[18] J. Yi, T. Clausen, A. Bas, "Smart route request for on-demand route discovery in constrained environments", Proceeding of the IEEE/ICWITS, pp. 1–4, Maui, HI, USA, Nov. 2012 (doi: 10.1109/ICWITS.2012.6417755).
[19] A. Bas, J. Yi, T. Clausen, "Expanding ring search for route discovery in loadng routing protocol", Proceedings of the IWSTEIC, Sendai, Japan, Apr. 2019.
[20] J. Yi, T. Clausen, "Collection tree extension of reactive routing protocol for low-power and lossy networks", International Journal of Distributed Sensor Networks, vol. 10, no. 3, Article Number: 352421, Feb. 2014 (doi: 10.1155/2014/352421).
[21] Z. Sharifian, B. Barekatain, A. Ariza Quintana, Z. Beheshti, F. Safi-Esfahani, "LOADng-AT: a novel practical implementation of hybrid AHP-TOPSIS algorithm in reactive routing protocol for intelligent IoT-based networks", The Journal of Supercomputing, vol. 78, no. 7, pp. 9521–9569, Jan. 2022 (doi: 10.1007/s11227-021-04256-8).
[22] M.E. Al-Sadoon, A. Jedidi, H. Al-Raweshidy, "Dual-tier cluster-based routing in mobile wireless sensor network for IoT application", IEEE Access, vol. 11, pp. 4079–4094, Jan. 2023 (doi: 10.1109/ACCESS.2023.3235200).
[23] R.M. Estepa Alonso, A.J. Estepa Alonso, G.M. Luque, E. García, "RPL cross-layer scheme for IEEE 802.15. 4 IoT devices with adjustable transmit power", IEEE Access, vol. 9, pp. 120689-120703, Aug. 2021 (doi: 10.1109/ACCESS.2021.3107981).
[24] G. Sharma, J. Grover, A. Verma, "Performance evaluation of mobile RPL-based IoT networks under version number attack", Computer Communications, vol. 197, pp. 12–22, Jan. 2023 (doi: 10.1016/j.comcom.2022.10.014).
[25] D. Sasidharan, L. Jacob, "Improving network lifetime and reliability for machine type communications based on LOADng routing protocol", Ad Hoc Networks, vol. 73, pp. 27–39, May 2018 (doi: 10.1016/j.adhoc.2018.02.007).
[26] J.V.V. Sobral, J.J. Rodrigues, K. Saleem, J. Al-Muhtadi, "Performance evaluation of LOADng routing protocol in IoT P2P and MP2P applications", Proceeding of the IEEE/IMCCES, pp. 1–6, Split, Croatia, Sept. 2016 (doi: 10.1109/SpliTech.2016.7555943).
[27] S. Elyengui, R. Bouhouchi, T. Ezzedine, "A comparative performance study of the routing protocols RPL, LOADng and LOADng-CTP with bidirectional traffic for AMI scenario", Proceeding of the IEEE/ICSGCE, pp. 43–49, Chengdu, China, Apr. 2016 (doi: 10.1109/ICSGCE.2015.7454267).
[28] J.V.V. Sobral, J.J. Rodrigues, N. Kumar, C. Zhu, R.W. Ahmad, "Performance evaluation of routing metrics in the LOADng routing protocol", Journal of Communications Software and Systems, vol. 13, no. 2, pp. 87–95, Jun. 2017 (doi: 10.1109/SpliTech.2016.7555943).
[29] J.V.V. Sobral, J.J. Rodrigues, R.A.L. Rabêlo, J. Al-Muhtadi, "Multicast improvement for LOADng in internet of things networks", Measurement, vol. 148, Article Number: 106931, Dec. 2019 (doi: 10.1016/j.measurement.2019.106931).
[30] J.V.V. Sobral, J.J.P.C. Rodrigues, R.A.L. Rabêlo, K. Saleem, S.A. Kozlov, "Improving the performance of LOADng routing protocol in mobile IoT scenarios", IEEE Access, vol. 7, pp. 107032–107046, Aug. 2019 (doi: 10.1109/ACCESS.2019.2932718).
[31] A.J.R. Gonçalves, R.A.L. Rabêlo, J.J. Rodrigues, L.M.L. Oliveira, "A mobility solution for low power and lossy networks using the LOADng protocol", Transactions on Emerging Telecommunications Technologies, vol. 31, no. 12, Article Number: e3878, Jan. 2020 (doi: 10.1002/ett.3878).
[32] S. Anwar, "Transmission of aggregated data in LOADng-Based IoT networks", Proceedings of Springer/CIPR, pp. 67–76, June 2022 (doi: 10.1007/978-981-19-3089-8_7).
[33] K. Li, T. Duan, Z. Li, X. Xiahou, N. Zeng, Q. Li, "Development path of construction industry internet platform: an AHP-TOPSIS integrated approach", Buildings, vol. 11, no. 4, Article Number: 441, Apr. 2022 (doi: 10.3390/buildings12040441).
[34] M. Behzadian, S.K. Otaghsara, M. Yazdani, J. Ignatius, "A state-of the-art survey of TOPSIS applications", Expert Systems with Applications, vol. 39, no. 17, pp. 13051–13069, Dec. 2012 (doi: 10.1016/j.eswa.2012.05.056).
[35] M. Cagalj, S. Ganeriwal, I. Aad, J.P. Hubaux, "On selfish behavior in CSMA/CA networks", Proceeding of the IEEE/INFCOM, vol. 4, pp. 2513–2524, Miami, FL, USA, Aug. 2005 (doi: 10.1109/INFCOM.2005.1498536).
[36] A. Ariza-Quintana, E. Casilari, A.T. Cabrera, "An architecture for the implementation of mesh networks in OMNeT++", Proceedings of the ICST2nd International Conference on Simulation Tools and Techniques, Brussels, Belgium, Mar. 2009 (doi: 10.4108/ICST.SIMUTOOLS2009.5549).
_||_