بهینهسازی مشترک سیستمهای انرژی یکپارچه در حضور منابع انرژی تجدیدپذیر، سیستمهای تبدیل توان به گاز و سیستم ذخیرهسازی انرژی
محورهای موضوعی : انرژی های تجدیدپذیرمه رو ستار 1 , محمود سمیعی مقدم 2 * , آزیتا آذرفر 3 , نسرین صالحی 4 , مجتبی واحدی 5
1 - دانشکده مهندسی برق- واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران
2 - دانشکده مهندسی برق- واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ایران
3 - دانشکده مهندسی برق- واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران
4 - دانشکده علوم پایه- واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران
5 - دانشکده مهندسی برق- واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران
کلید واژه: بهینهسازی, باتری, مدل خطی باینری, سیستم توان به گاز, سیستمهای یکپارچه انرژی,
چکیده مقاله :
با توجه به نفوذ بالای منابع انرژی تجدیدپذیر و تاثیر مستقیم بر روی توان شبکه، مسئله مدیریت انرژی بیش از پیش مورد توجه محققان قرار گرفته است. سیستم تبدیل توان به گاز سبب می شود که برق مازاد تولید شده از منابع انرژی تجدیدپذیر موجود در شبکه به گاز تبدیل و به شبکه گاز فروخته شود، در همین راستا نیز منابع تولیدپراکنده گازسوز و سیستمهای توان به گاز سبب تعامل دو شبکه برق و گاز خواهد شد، بنابراین مدیریت انرژی و کسب سود با در نظر گرفتن این دو شبکه بهعنوان بهینهسازی مشترک سیستمهای انرژی یکپارچه، موضوعی است که از اهمیت ویژه ای برخوردار است. در این مقاله یک مدل برنامه ریزی خطی عدد صحیح مختلط (MILP) تصادفی مبتنی بر سناریو به منظور بهینه سازی سیستم یکپارچه برق و گاز طبیعی با در نظر گرفتن منابع تولید پراکنده گازسوز، سیستمهای توان به گاز، سیستم های ذخیرهسازی انرژی و خودروهای برقی با هدف کاهش هزینه خرید انرژی و قطع توان منابع انرژی تجدیدپذیر ارائه شده است. شبکه توزیع برق 33 شینه و شبکه گاز طبیعی 7 گرهی برای تحلیل مدل پیشنهادی در نظر گرفته شده و مدل پیشنهادی با استفاده از حل کننده قدرتمند گروبی با در نظر گرفتن سناریوهای مختلف حل شده است. نتایج سناریوهای مختلف کارایی مدل پیشنهادی را نشان می دهد.
Due to the high penetration of renewable energy resources and the direct impact on the power system, the issue of energy management has received more attention than researchers. Power-to-gas (P2G) system causes the surplus electricity generated from renewable energy resources in the network to be converted to gas and sold to the gas network, so energy management and profitability are a matter of particular importance, considering the two grids as a joint optimization of integrated energy systems. This paper presents a scenario-based stochastic mixed-integer linear programming (MILP) model to optimize integrated gas and electricity integrated systems considering natural gas distributed generation resources, P2G systems, energy storage systems, and electric vehicles. It aims to reduce the cost of purchasing energy and cut off the power of renewable energy resources. The 33-bus power distribution network and the 7-node natural gas network are considered for the analysis of the proposed model, and the proposed model is solved using the powerful Gurobi solver, considering various cases. The results of different cases show the performance of the proposed model.
[1] Y. Sun, B. Zhang, L. Ge, D. Sidorov, J. Wang, Z. Xu, "Day-ahead optimization schedule for gas-electric integrated energy system based on second-order cone programming", CSEE Journal of Power and Energy Systems, vol. 6, no. 1, pp. 142-151, March 2020 (doi: 10.17775/CSEEJPES.2019.00860).
[2] Y. Tao, J. Qiu, S. Lai, J. Zhao, "Integrated electricity and hydrogen energy sharing in coupled energy systems", IEEE Trans. on Smart Grid, vol. 12, no. 2, pp. 1149-1162, March 2021 (doi: 10.1109/TSG.2020.3023716).
[3] P. Zhao, C. Gu, Z. Cao, Z. Hu, X. Zhang, X. Chen, I. Hernando-Gil, Y. Ding, "Economic-effective multi-energy management considering voltage regulation networked with energy hubs", IEEE Trans. on Power Systems, vol. 36, no. 3, pp. 2503-2515, May 2021 (doi: 10.1109/TPWRS.2020.3025861).
[4] J. Zhai, X. Zhou, Y. Li, “Reliability analysis of power-gas integrated energy system based on dynamic simulation”, IEEE Access, vol. 9, pp. 65855-65870, 2021 (doi: 10.1109/ACCESS.2021.3065957).
[5] A. U. Rehman, Z. Wadud, R. M. Elavarasan, G. Hafeez, I. Khan, Z. Shafiq, H. H. Alhelou, “An optimal power usage scheduling in smart grid integrated with renewable energy sources for energy management", IEEE Access, vol. 9, pp. 84619-84638, 2021 (doi: 10.1109/ACCESS.2021.3087321).
[6] J. Wang, C. Wang, Y. Liang, T. Bi, M. Shafie-khah, J. P. S. Catalão, “Data-driven chance-constrained optimal gas-power flow calculation: A bayesian nonparametric approach”, IEEE Trans, on Power Systems, vol. 36, no. 5, pp. 4683-4698, Sept. 2021 (doi: 10.1109/TPWRS.2021.3065465).
[7] Q. Sun, Y. Fu, H. Lin, R. Wennersten, "A novel integrated stochastic programming-information gap decision theory (IGDT) approach for optimization of integrated energy systems (IESs) with multiple uncertainties", Applied Energy, vol. 314, Article Number: 119002, May 2022 (doi: 10.1016/j.apenergy.2022.119002).
[8] K.H.M. Al-Hamed, I. Dincer, “Exergoeconomic analysis and optimization of a solar energy-based integrated system with oxy-combustion for combined power cycle and carbon capturing", Energy, vol. 250, Article Number: 123814, July 2022 (doi: 10.1016/j.energy.2022.123814).
[9] Y. Huang, J. Kang, L. Liu, X. Zhong, J. Lin, S. Xie, C. Meng, Y. Zeng, N. Shah, N. Brandon, Y. Zhao, “A hierarchical coupled optimization approach for dynamic simulation of building thermal environment and integrated planning of energy systems with supply and demand synergy", Energy Conversion and Management, vol. 258, Article Number: 115497, April 2022 (doi: 10.1016/j.enconman.2022.115497).
[10] Z. Cao, J. Wang, Q. Zhao, Y. Han, Y. Li, "Decarbonization scheduling strategy optimization for electricity-gas system considering electric vehicles and refined operation model of power-to-gas", IEEE Access, vol. 9, pp. 5716-5733, 2021 (doi: 10.1109/ACCESS.2020.3048978).
[11] M. A. Mirzaei, M. Nazari-Heris, B. Mohammadi-Ivatloo, K. Zare, M. Marzband and A. Anvari-Moghaddam, "A novel hybrid framework for co-optimization of power and natural gas networks integrated with emerging technologies", IEEE Systems Journal, vol. 14, no. 3, pp. 3598-3608, Sept. 2020 (doi: 10.1109/JSYST.2020.2975090).
[12] X. Jiang, Q. Li, Y. Yang, L. Zhang, X. Liu, N. Ning, “Optimization of the operation plan taking into account the flexible resource scheduling of the integrated energy system", Energy Reports, vol. 8, no. 4, pp. 1752-1762, 2022 (doi: 10.1016/j.egyr.2022.02.211).
[13] Y. Mu, C. Wang, M. Sun, W. He, W. Wei, “CVaR-based operation optimization method of community integrated energy system considering the uncertainty of integrated demand response", Energy Reports, vol. 8, no. 1, pp. 1216-1223, 2022 (doi: 10.1016/j.egyr.2021.11.133).
[14] F. Qi, M. Shahidehpour, F. Wen, Z. Li, Y. He, M. Yan, “Decentralized privacy-preserving operation of multi-area integrated electricity and natural gas systems with renewable energy resources", IEEE Trans. on Sustainable Energy, vol. 11, no. 3, pp. 1785-1796, July 2020 (doi: 10.1109/TSTE.2019.2940624).
[15] Z. Li, Z. Yu, D. Lin, W. Wu, H. Zhu, T. Yu, H. Li, "Environmental economic dispatch strategy for power-gas interconnection system considering spatiotemporal diffusion of air pollutant and p2g in coastal areas", IEEE Access, vol. 8, pp. 123662-123672, 2020 (doi: 10.1109/ACCESS.2020.3006025).
[16] B. Li, M. Chen, Z. Ma, G. He, W. Dai, D. Liu, C. Zhang, H. Zhong, “Modeling integrated power and transportation systems: impacts of power-to-gas on the deep decarbonization", IEEE Trans.on Industry Applications, vol. 58, no. 2, pp. 2677-2693, March-April 2022 (doi: 10.1109/TIA.2021.3116916).
[17] S. Chen, A. J. Conejo, Z. Wei, “Gas-power coordination: from day-ahead scheduling to actual operation", IEEE Trans. on Power Systems, vol. 37, no. 2, pp. 1532-1542, March 2022 (doi: 10.1109/TPWRS.2021.3098768).
[18] C. Saletti, M. Morini, A. Gambarotta, “Smart management of integrated energy systems through co-optimization with long and short horizons", Energy, vol. 250, Article Number: 123748, 2022 (doi: 10.1016/j.energy.2022.123748).
[19] Y. Huang, Y. Wang, N. Liu, “A two-stage energy management for heat-electricity integrated energy system considering dynamic pricing of Stackelberg game and operation strategy optimization", Energy, vol. 244, Article Number: 122576, April 2022 (doi: 10.1016/j.energy.2021.122576).
[20] D. Niu, M. Yu, L. Sun, T. Gao, K. Wang, “Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism", Applied Energy, vol. 313, 2022 (doi: 10.1016/j.apenergy.2022.118801).
[21] R. Zhang, T. Jiang, F. Li, G. Li, H. Chen, X. Li, "Coordinated bidding strategy of wind farms and power-to-gas facilities using a cooperative game approach"," IEEE Trans. on Sustainable Energy, vol. 11, no. 4, pp. 2545-2555, Oct. 2020 (doi: 10.1109/TSTE.2020.2965521).
[22] Y. Wang, Z. Liu, C. Cai, L. Xue, Y. Ma, H. Shen, X. Chen, L. Liu, “Research on the optimization method of integrated energy system operation with multi-subject game", Energy, vol. 245, Article Number: 123305, 2022 (doi: 10.1016/j.energy.2022.123305).
[23] W. Yang, J. Guo, A. Vartosh, “Optimal economic-emission planning of multi-energy systems integrated electric vehicles with modified group search optimization", Applied Energy, vol. 311, Article Number: 118634, 2022 (doi: 10.1016/j.apenergy.2022.118634).
[24] H. Khani, H. E. Z. Farag, "Optimal day-ahead scheduling of power-to-gas energy storage and gas load management in wholesale electricity and gas markets", IEEE Trans. on Sustainable Energy, vol. 9, no. 2, pp. 940-951, April 2018 (doi: 10.1109/TSTE.2017.2767064).
[25] D. Xu, B. Zhou, Q. Wu, C. Y. Chung, C. Li, S. Huang, S. Chen, "Integrated modelling and enhanced utilization of power-to-ammonia for high renewable penetrated multi-energy systems", IEEE Trans. on Power Systems, vol. 35, no. 6, pp. 4769-4780, Nov. 2020 (doi: 10.1109/TPWRS.2020.2989533).
[26] Q. Zeng, J. Fang, J. Li, Z. Chen, “Steady–state analysis of the integrated natural gas and electric power system with bi–directional energy conversion", Applied Energy, vol. 184, no. 15, pp. 1483- 1492, Dec. 2016 (doi: 10.1016/j.apenergy.2016.05.060).
[27] C. Wang, S. Wang, F. Liu, T. Bi, T. Wang, "Risk-loss coordinated admissibility assessment of wind generation for integrated electric-gas systems", IEEE Trans. on Smart Grid, vol. 11, no. 5, pp. 4454-4465, Sept. 2020 (doi: 10.1109/TSG.2020.2979944).
[28] Y. Li, W. Liu, M. Shahidehpour, F. Wen, K. Wang, Y. Huang, "Optimal operation strategy for integrated natural gas generating unit and power-to-gas conversion facilities", IEEE Trans. on Sustainable Energy, vol. 9, no. 4, pp. 1870-1879, Oct. 2018 (doi: 10.1109/TSTE.2018.2818133).
[29] S. Clegg, P. Mancarella, "Integrated modeling and assessment of the operational impact of power-to-gas (p2g) on electrical and gas transmission networks", IEEE Trans. on Sustainable Energy, vol. 6, no. 4, pp. 1234-1244, Oct. 2015 (doi: 10.1109/TSTE.2015.2424885).
[30] S. Chen, Z. Wei, G. Sun, K. W. Cheung, Y. Sun, "Multi-linear probabilistic energy flow analysis of integrated electrical and natural-gas systems,", IEEE Trans. on Power Systems, vol. 32, no. 3, pp. 1970-1979, May 2017 (doi: 10.1109/TPWRS.2016.2597162).
[31] S. Souri, H. Mohammadnezhad-Shourkaei, S. Soleymani, B. Mozafari, "Reactive power management in low voltage distribution networks using capability and oversizing of PV smart inverters", Journal of Intelligent Procedures in Electrical Technology, vol. 14, no. 56, pp. 21-42, March 2024 (http://jipet.iaun.ac.ir/artile_691569.html).
[32] S. Alavimatin, P. Radmehr, A. Ahmarinejad, S. Mansouri, 'Distribution systems energy management in the presence of smart homes, renewable energy resources and demand response programs by considering uncertainties", Journal of Intelligent Procedures in Electrical Technology, vol. 14, no. 53, pp. 79-98, June 2023 (dor: 20.1001.1.23223871.1402.14.53.5.9).
[33] M. Zare, S. Saeed, H. Akbari, “Demand response programs modeling in multiple energy and structure management in microgrids equipped by combined heat and power generation”, Journal of Intelligent Procedures in Electrical Technology, vol. 14, no. 53, pp. 99-120, June 2023 (dor: 20.1001.1.23223871.1402.14.53.6.0).
[34] K.E. Adetunji, I.W. Hofsajer, A.M. Abu-Mahfouz, L. Cheng, "Category-based multiobjective approach for optimal integration of distributed generation and energy storage systems in distribution networks", IEEE Access, vol. 9, pp. 28237-28250, 2021 (doi: 10.1109/ACCESS.2021.3058746).
[35] P. Li, D. Xu, Z. Zhou, W. -J. Lee, B. Zhao, "Stochastic optimal operation of microgrid based on chaotic binary particle swarm optimization", IEEE Trans. on Smart Grid, vol. 7, no. 1, pp. 66-73, Jan. 2016 (doi: 10.1109/TSG.2015.2431072).
[36] J.M. Nahman, D.M. Peric, "Optimal planning of radial distribution networks by simulated annealing technique", IEEE Trans. on Power Systems, vol. 23, no. 2, pp. 790-795, May 2008 (doi: 10.1109/TPWRS.2008.920047).
[37] J. Bezanson, A. Edelman, S. Karpinski, V. B. Shah, "Julia: A fresh approach to numerical computing", SIAM Review, vol. 59, no. 1, pp. 65-98, 2017 (doi: 10.1137/141000671).
_||_