یک چارچوب غیرمتمرکز مبتنی بر تبادل های انرژی رخبهرخ در ریزشبکهها برای بهبود تابآوری با درنظرگرفتن استقلال و حریم خصوصی
محورهای موضوعی : انرژی های تجدیدپذیرمحمد دوستی زاده 1 , حسن جلیلی 2 * , عباس بابایی 3
1 - گروه مهندسی برق- واحد خمین، دانشگاه آزاد اسلامی، خمین، ایران
2 - گروه مهندسی برق- واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران
3 - گروه مهندسی برق- واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران
کلید واژه: تاب آوری, ریزشبکه, برنامه ریزی غیرمتمرکز, تبادل های رخبهرخ انرژی,
چکیده مقاله :
بروز حوادث شدیدی مانند رخداد سیل، زلزله و طوفان سبب ایجاد اختلال در عملکرد شبکه های توزیع شده و جزیره ای شدن آن ها را به دنبال دارد. در این شرایط، در صورتی که شبکه های توزیع دارای ریزشبکه ها باشند، این ریزشبکه ها قادرند تا با کمک زیرساخت های فنی و ارتباطی خود از شبکه اصلی جدا شده و با اتصال به یکدیگر به تبادل انرژی پرداخته و هزینه های بهره برداری و خاموشی خود را کاهش دهند. بنابراین مدیریت انرژی در یک شبکه چند-ریزشبکه ای نیازمند یک چارچوب بهره برداری غیرمتمرکز است تا با ایجاد مشوق های لازم، ریزشبکه ها را تشویق به تراکنش های میان ریزشبکه ای کند. در این مقاله یک چارچوب کاملاً غیرمتمرکز جهت بهبود تاب آوری ریزشبکه ها بر اساس سازماندهی تبادل های رخ به رخ انرژی آنها با درنظرگرفتن انگیزه های مالی مناسب جهت مشارکت ریزشبکه ها پیشنهاد شده است. در مدل پیشنهادی داده های خصوصی هر کدام از ریزشبکه ها مانند اطلاعات بار و منابع تولید پراکنده، در هنگام تسویه بازار محفوظ باقی می ماند. با استفاده از مدل غیرمتمرکز پیشنهادی، ریزشبکه ها می توانند در بستر تبادل های رخ به رخ انرژی، علاوه بر کاهش هزینه های بهره برداری خویش نسبت به حالت جزیره ای، تاب آوری شبکه را نیز افزایش دهند. رویکرد غیرمتمرکز پیشنهادی به کنترل کننده مرکزی نیاز نداشته و سرعت همگرایی بالایی دارد. برای ارزیابی عملکرد روش پیشنهادی، شبیه سازی ها برای یک سیستم دارای چهارده ریزشبکه انجام و نتایج به دست آمده با رویکرد جزیره ای مقایسه شده است. شبیه سازی ها در محیط متلب و با استفاده از جعبه ابزار Yalmip انجام شده است. برای حل مدل برنامه ریزی نیز از CPLEX 12.9 استفاده شده است. نتایج به دست آمده کارآیی روش پیشنهادی در افزایش تاب آوری و کاهش هزینه های بهر ه برداری را نشان داده است.
Severe events such as floods, earthquakes and hurricanes cause disruption in the operation of distribution networks and lead to their islanding. In such cases, if the distribution networks have microgrids, these microgrids are able to separate from the main network and exchange energy with each other to reduce the operation and outage costs. Therefore, the energy management in a multi-microgrid network requires a decentralized operating framework to encourage microgrids to have transactions with each other by providing the necessary incentives. This paper developes a completely decentralized framework to improve the resilience of microgrids based on the organization of peer-to-peer energy transactions, taking into account the appropriate financial incentives for the participation of microgrids. The developed model protects the private data of each microgrid, such as load information and distributed generation resources, during market settlement. Using the developed decentralized model, microgrids can increase network resilience in the context of peer-to-peer energy exchanges, in addition to reducing their operating costs compared to the island mode. The proposed decentralized approach does not require a central controller and has a high convergence speed. Simulations are performed on a system with fourteen microgrids and the results are compared with the island approach to evaluate the performance of the proposed method. The simulations are performed in MATLAB R2020b environment using YALMIP toolbox. CPLEX 12.9 is also used to solve the optimization problem. The results show the efficiency of the proposed method in increasing the resilience and reducing the operating costs.
[1] M.M. Arsoon, S.M. Moghaddas-Tafreshi, "Peer-to-peer energy bartering for the resilience response enhancement of networked microgrids", Applied Energy, vol. 261, Article Number: 114413, Mar. 2020 (doi: 10.1016/j.apenergy.2019.114413).
[2] A. Gholami, T. Shekari, M.H. Amirioun, F. Aminifar, M.H. Amini, A. Sargolzaei, "Toward a consensus on the definition and taxonomy of power system resilience", IEEE Access, vol. 6, pp. 32035-32053, June 2018 (doi: 10.1109/ACCESS.2018.2845378).
[3] S. Ma, B. Chen, Z. Wang, "Resilience enhancement strategy for distribution systems under extreme weather events", IEEE Trans. on Smart Grid, vol. 9, pp. 1442-1451, Mar. 2018 (doi: 10.1109/TSG.2016.2591885).
[4] J. Liu, C. Qin, Y. Yu, "Enhancing distribution system resilience with proactive islanding and RCS-based fast fault isolation and service restoration", IEEE Trans. on Smart Grid, vol. 11, pp. 2381-2395, May 2020 (doi: 10.1109/TSG.2019.2953716).
[5] K.S.A. Sedzro, A.J. Lamadrid, L.F. Zuluaga, "Allocation of resources using a microgrid formation approach for resilient electric grids", IEEE Trans. on Power Systems, vol. 33, pp. 2633-2643, Aug. 2017 (doi: 10.1109/TPWRS.2017.2746622).
[6] M.H. Amirioun, F. Aminifar, H. Lesani, "Resilience-oriented proactive management of microgrids against windstorms", IEEE Trans. on Power Systems, vol. 33, pp. 4275-4284, July 2018 (doi: 10.1109/TPWRS.2017.2765600).
[7] Y. Wang, A.O. Rousis, G. Strbac, "A resilience enhancement strategy for networked microgrids incorporating electricity and transport and utilizing a stochastic hierarchical control approach", Sustainable Energy, Grids and Networks, vol. 26, Article Number: 100464, June 2021 (doi: 10.1016/j.segan.2021.100464).
[8] M. Mehdinejad, H. Shayanfar, B. Mohammadi-Ivatloo, "Peer-to-peer decentralized energy trading framework for retailers and prosumers", Applied Energy, vol. 308, p. 118310, Feb. 2022 (doi: 10.1016/j.apenergy.2021.118310).
[9] H. Bastami, M.R. Shakarami, M. Doostizadeh, "Optimal scheduling of a reconfigurable active distribution network with multiple autonomous microgrids", Electric Power Systems Research, vol. 201, Article Number: 107499, Dec. 2021 (doi: 10.1016/j.epsr.2021.107499).
[10] A. Arif, Z. Wang, "Networked microgrids for service restoration in resilient distribution systems", IET Generation, Transmission and Distribution, vol. 11, pp. 3612-3619, Aug. 2017 (doi: 10.1049/iet-gtd.2017.0380).
[11] A. Hussain, V.H. Bui, H.M. Kim, "Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience”, Applied Energy, vol. 240, pp. 56-72, April 2019 (doi: 10.1016/j.apenergy.2019.02.055).
[12] C. Hotaling, S. Bird, M.D. Heintzelman, "Willingness to pay for microgrids to enhance community resilience", Energy Policy, vol. 154, Article Number: 112248, July 2021 (doi: 10.1016/j.enpol.2021.112248).
[13] A. Younesi, H. Shayeghi, P. Siano, A. Safari, "A multi-objective resilience-economic stochastic scheduling method for microgrid", International Journal of Electrical Power and Energy Systems, vol. 131, Article Number: 106974, Oct. 2021 (doi: 10.1016/j.ijepes.2021.106974).
[14] R. Nourollahi, P. Salyani, K. Zare, B. Mohammadi-Ivatloo, "Resiliency-oriented optimal scheduling of microgrids in the presence of demand response programs using a hybrid stochastic-robust optimization approach", International Journal of Electrical Power and Energy Systems, vol. 128, Article Number: 106723, June 2021 (doi: 10.1016/j.ijepes.2020.106723).
[15] J. Liu, L. Jian, W. Wang, Z. Qiu, J. Zhang, P. Dastbaz, "The role of energy storage systems in resilience enhancement of health care centers with critical loads", Journal of Energy Storage, vol. 33, Article Number: 102086, Jan. 2021 (doi: 10.1016/j.est.2020.102086).
[16] Z. Liang, Q. Alsafasfeh, W. Su, "Proactive resilient scheduling for networked microgrids with extreme events", IEEE Access, vol. 7, pp. 112639-112652, Aug. 2019 (doi: 10.1109/ACCESS.2019.2933642).
[17] H. Bastami, M.R. Shakarami, M. Doostizadeh, "A decentralized cooperative framework for multi-area active distribution network in presence of inter-area soft open points", Applied Energy, vol. 300, Article Number: 117416, Oct. 2021 (doi: 10.1016/j.apenergy.2021.117416).
[18] M. Doostizadeh, M.R. Shakarami, H. Bastami, "Decentralized energy trading framework for active distribution networks with multiple microgrids under uncertainty", Scientia Iranica, vol. 26, no. 6, pp. 3606-3621, Sept. 2019 (doi: 10.24200/sci.2019.53962.3557).
[19] H. Bastami, M.R. Shakarami, M. Doostizadeh, "A non-hierarchical ATC framework for parallel scheduling of active distribution network with multiple autonomous microgrids", International Journal of Electrical Power and Energy Systems, vol. 133, Article Number: 107293, Dec. 2021 (doi: 10.1016/j.ijepes.2021.107293).
[20] P. Huang, M. Lovati, J. Shen, J. Chai, and X. Zhang, "Investigation of the peer-to-peer energy trading performances in a local community under the future climate change scenario in sweden", Energy Reports, vol. 8, pp. 989-1001, Nov. 2022 (doi: 10.1016/j.egyr.2021.12.032).
[21] W. Amin, Q. Huang, K. Umer, Z. Zhang, M. Afzal, A. A. Khan, S. AdreesAhmed, "A motivational game-theoretic approach for peer-to-peer energy trading in islanded and grid-connected microgrid", International Journal of Electrical Power and Energy Systems, vol. 123, Article Number: 106307, Dec. 2020 (doi: 10.1016/j.ijepes.2020.106307).
_||_