ارائه یک مبدل غیر ایزوله بسیار افزاینده با کلیدزنی نرم و تعداد المان کمکی کم
محورهای موضوعی : انرژی های تجدیدپذیرشکوه شعبانی 1 , مجید دلشاد 2 * , رامتین صادقی 3
1 - دانشکده فنی مهندسی- واحد خوراسگان، دانشگاه آزاد اسلامی، خوراسگان، اصفهان، ایران
2 - دانشکده فنی مهندسی- واحد خوراسگان، دانشگاه آزاد اسلامی، خوراسگان، اصفهان، ایران
3 - دانشکده فنی مهندسی- واحد خوراسگان، دانشگاه آزاد اسلامی، خوراسگان، اصفهان، ایران
کلید واژه: مدولاسیون پهنای پالس, کلیدزنی نرم, بسیار افزاینده, گذر-ولتاژ-صفر,
چکیده مقاله :
در این مقاله، یک مبدل غیر ایزوله بسیار افزاینده جدید با کلیدزنی نرم ارائه شده است. یک مدار کمکی با حداقل تعداد المان به مبدل پیشنهادی اضافه شده که شرایط کلیدزنی نرم را برای کلیه المان های نیمه هادی فراهم می نماید، لذا مشکل بازیابی معکوس دیودها را برطرف و تلفات کلیدزنی و هدایتی کلیدها را کاهش می دهد. همچنین، در مبدل پیشنهادی تنها از یک هسته مغناطیسی استفاده شده که موجب کاهش مقاومت مسی سیم پیچ ها می گردد، در نتیجه راندمان مبدل پیشنهادی در مقایسه با مبدل بوست متداول بهبود یافته است. همچنین برای پایداری ولتاژ خروجی مبدل در سطح دلخواه در لحظه های تغییر بار، از کنترل کننده انتگرالی تناسبی استفاده شده و نتایج شبیه سازی آن با نرم افزار متلب ارائه شده است. برای اثبات تحلیل های تئوری کلیدزنی نرم، یک نمونه آزمایشگاهی 250 واتی پیاده سازی گردیده و نتایج عملی آن ارائه شده است.
In this paper, a new soft switched non-isolated high step-up DC-DC converter is proposed. An auxiliary circuit with minimum number of elements is added to the converter to provide the soft switching conditions for all the semiconductors solving the reverse recovery problem of the diodes, and reducing the conduction and the switching losses of the power switches. Moreover, there is only one magnetic core used in the converter decreasing the copper resistance; thus, the power losses and the electromagnetic interference of the converter is reduced so the efficiency of the proposed converter compared to the conventional hard switched boost converter, is improved. Further, in order to adjust the output voltage of the proposed converter to the desired value under the load variations, a PI controller has been applied to the output of the proposed converter and its operation is simulated by MATLAB. In order to verify the theoretical analysis of the soft switching operations, a 250W prototype is implemented and its experimental results are provided.
[1] W. Li, X. He, "Review of nonisolated high-Step-Up DC/DC converters in photovoltaic grid-connected applications", IEEE Trans. on Industrial Electronics, vol. 58, no. 44, pp 1239-1250, April 2011 (doi: 10.1109/TIE.2010.2049715)
[2] B. Poorali, A. Torkan, E. Adib, "High step-up z-source DC–DC converter with coupled inductors and switched capacitor cell", IET Power Electronics, vol. 8, no. 8, pp 1394-1402, April 2015 (doi: 10.1049/iet-pel.2014.0200)
[3] W. Li, X. Lv, Y. Deng, Y. Deng, J. Liu, X. He, "A review of non-isolated high step-up DC/DC converters in renewable energy applications", Proceeding of the IEEE/APEC, pp 364-369, Washington, DC, USA, Feb. 2009 (doi: 10.1109/APEC.2009.4802683).
[4] K. Patidar, A. C. Umarikar, "High step-up pulse-width modulation DC–DC converter based on quasi-Z-source topology", IET Power Electronics, vol. 8, no. 4, pp 477–488, April 2015 (doi: 10.1049/iet-pel.2014.0311).
[5] F.L. Tofoli, D.D.C. Pereira, W.J. Paula, "Survey on non-isolated high-voltage step-up dc–dc topologies based on the boost converter", IET Power Electronics, vol. 8, no. 10, pp 2044–2057, July 2015 (doi: 10.1049/iet-pel.2014.0605).
[6] L. Schirone, M. Macellari: "Design of high-efficiency non-insulated step-up converters", IET Power Electronics, vol. 8, no. 5, pp 743–749, May 2015 (doi: 10.1049/iet-pel.2014.0554).
[7] R. Loera-Palomo, J. A. Morales-Saldaña: "Family of quadratic step-up dc–dc converters based on non-cascading structures", IET Power Electronics, vol. 8, no. 5, pp 793–801, March 2015 (doi: 10.1049/iet-pel.2013.0879).
[8] E. H. Ismail, M. A. Al-Saffar, A. J. Sabzali, A. A. Fardoun: "A family of single-switch PWM converters with high step-up conversion ratio", IEEE Transactions on Circuits and Systems I, vol. 55, no. 4, pp 1159-1171, June 2008 (doi: 10.1109/TCSI.2008.916427).
[9] S. Mirtalaei, M. Mohtaj, H. Karami, “Design and implementation of a high step-up boost-sepic hybrid converter with soft switching”, Journal of Intelligent Procedures in Electrical Technology, vol. 6, no. 24, pp. 27-34, March 2016 (dor: 20.1001.1.23223871.1394.6.24.3.3) (in Persian).
[10] T. Shamsi, M. Delshad, E. Adib, M. R. Yazdani: "A new simple-structure passive lossless snubber for dc_dc boost converters", IEEE Transactions on Industrial Electronics, vol. 68, no. 3, pp 2207-2214, February 2021 (doi: 10.1109/TIE.2020.2973906).
[11] G. Haghshenas, S.M.M. Mirtalaei, H. Mordmand, G. Shahgholian,"High step-up boost-flyback converter with soft switching for photovoltaic applications", Journal of Circuits, Systems, and Computers, Vol. 28, No. 1, pp. 1-16, Jan. 2019 (doi:10.1142/S0218126619500142) (ISSN: 0218-1266).
[12] J.C. Rosas-Caro, J.M. Ramirez, F.Z. Peng, A. Valderrabano, "A dc–dc multilevel boost converter", IET Power Electronics, vol. 3, no. 1, pp 129– 137, Nov. 2008 (doi: 10.1049/iet-pel.2008.0253).
[13] B. Akhlaghi, N. Molavi, M. Fekri, H. Farzanehfard, "High step-up interleaved ZVT converter with low voltage stress and automatic current sharing", IEEE Trans. on Industrial Electronics, vol. 65, no. 1, pp 291-299, July 2017 (doi: 10.1109/TIE.2017.2723861).
[14] J. Yun, H. Choe, Y. Hwang, Y. Park, B. Kang, "Improvement of power-conversion efficiency of a dc–dc boost converter using a passive snubber circuit", IEEE Trans. on Industrial Electronics, vol. 59, no. 4, pp 1808-1814, April 2012 (doi: 10.1109/TIE.2011.2141095).
[15] T. Meng, H. Ben, X. Wang, "A passive flyback auxiliary circuit with integrated transformer suitable for three-phase isolated full-bridge boost PFC converter", IEEE Trans. on Power Electronics, vol. 31, no. 7, pp 4995-5003, March 2017 (doi: 10.1109/TIE.2017.2682041).
[16] C. Hua, Y. Fang, C. Huang: "Zero-voltage-transition bridgeless power factor correction rectifier with soft-switched auxiliary circuit", IET Power Electronics, vol. 9, no. 3, pp 546-552, Dec. 2015 (doi: 10.1049/iet-pel.2014.0645).
[17] M.R. Yazdani, H. Farzanehfard, J. Faiz, "EMI analysis and evaluation of an improved ZCT flyback converter", IEEE Trans. on Power Electronics, vol. 26, no. 8, pp 2326-2334, Sept. 2011 (doi: 10.1109/TPEL.2010.2095884).
[18] R. Fani, E. Farshidi, E. Adib, A. Kosarian, "Analysis, design, and implementation of a ZVT high step-up dc–dc converter with continuous input current", IEEE Trans. on Industrial Electronics, vol. 67, no. 12, pp 10455-10463, Dec. 2019 (10.1109/TIE.2019.2960727).
[19] N. Lakshminarasamma, V. Ramanarayanan, "A family of auxiliary switch ZVS-PWM dc–dc converters with coupled inductor", IEEE Trans. on Power Electronics, vol. 22, no. 5, pp 2008-2017, Oct. 2007 (doi: 10.1109/TPEL.2007.904225).
[20] B. Poorali, H.M. Jazi, E. Adib, "Improved high step-up z-source dc–dc converter with single core and ZVT operation", IEEE Trans. on Power Electronics, vol. 33, no. 11, pp 9647-9655, Dec. 2017 (doi: 10.1109/TPEL.2017.2787907).
[21] R. Pradhan, B. Subudhi, "Double integral sliding mode MPPT control of a photovoltaic system", IEEE Trans. on Control Systems Technology, vol. 24, no. 1, pp 285-292, May 2015 (doi: 10.1109/TCST.2015.2420674).
[22] R. Sadeghi, S.M. Madani, M. Ataei, M.R. Agha Kashkooli, S. Ademi, "Super-twisting sliding mode direct power control of a brushless doubly fed induction generator", IEEE Trans. on Industrial Electronics, vol. 65, no. 11, pp 9147-9156, March 2018 (doi: 10.1109/TIE.2018.2818672).
[23] B. Fani, M. Delshad, "Design and implementation of a new current fed converter with zero current switching conditions", Journal of Intelligent Procedures in Electrical Technology, vol. 1, no. 3, pp 11-18, Dec. 2010 (dor: 20.1001.1.23223871.1389.1.3.2.5) (in Persian).
[24] B. Fani, M. Delshad, D. Nazarpour, "A new hard switching bidirectional converter with high power density", Journal of Intelligent Procedures in Electrical Technology, vol. 1, no. 1, pp 51-56, June 2010 (dor: 20.1001.1.23223871.1389.1.1.6.5).
[25] G.M.L. Chu, D.D.C. Lu, V.G. Agelidis, "Flyback-based high step-up converter with reduced power rocessing stages", IET Power Electronics, vol. 5, no. 3, pp 349-357, March 2012 (doi: 10.1049/iet-pel.2011.0204).
[26] W. Li, W. Li, X. He, D. Xu, B. Wu: "General derivation law of nonisolated high-step-up interleaved converters with built-in transformer", IEEE Trans. on Industrial Electronics, vol. 59, no. 3, pp 1650-1661, March 2012 (doi: 10.1109/TIE.2011.2163375).
[27] M.L. Alghaythi, R.M. O’Connell, N.E. Islam, M.M.S. Khan, J.M. Guerrero, "A high step-up interleaved dc-dc converter with voltage multiplier and coupled inductors for renewable energy systems", IEEE Access, vol. 8, pp. 123165-123174, July 2020 (doi: 10.1109/ACCESS.2020.3007137).
[28] W. Hassan, D.D.C. Lu, W. Xiao, "A single-switch high step-up dc–dc converter with low and steady switch voltage stress", IEEE Trans. on Industrial Electronics, vol. 66, no. 12, pp. 9326-9338, Jan. 2019 (doi: 10.1109/TIE.2019.2893833).
[29] S.W. Seo, J.H. Ryu, Y. Kim, H.H. Choi, "Non-isolated high step-up dc/dc converter with coupled inductor and switched capacitor", IEEE Access, vol. 8, pp. 217108-217122, Jan. 2020 (doi: 10.1109/ACCESS.2020.3041738).
[30] A.M.S.S. Andrade, L. Schuch, M.L.S. Martins, "Analysis and design of high-efficiency hybrid high step-up dc–dc converter for distributed PV generation systems", IEEE Trans. on Industrial Electronics, vol 66, no. 5, pp. 3860-3868, May 2019 (doi: 10.1109/TIE.2018.2840496).
[31] Y. Zheng, B. Brown, W. Xie, S. Li, K. Smedley, "High step-up dc–dc converter with zero voltage switching and low input current ripple", IEEE Trans. on Power Electronics vol. 35, no. 9, pp. 9416-9429, Jan. 2020 (doi: 10.1109/TPEL.2020.2968613).
[32] P. Alavi, P. Mohseni, E. Babaei, V. Marzang, "An ultra-high step-up dc–dc converter with extendable voltage gain and soft-switching capability", IEEE Trans. on Industrial Electronics, vol 67, no. 11, pp. 9238-9250, Nov. 2019 (doi: 10.1109/TIE.2019.2952821).
_||_