نهان نگاری مقاوم و نیمه کور تصاویر دیجیتال بر اساس تابع تبدیل موجک گسسته و تجزیه مقادیر تکین
محورهای موضوعی : انرژی های تجدیدپذیرمحمدرضا رضایتمند 1 , علیرضا نقش 2 *
1 - دانشکده مهندسی برق- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.
2 - مرکز تحقیقات پردازش دیجیتال و بینایی ماشین- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
کلید واژه: تبدیل موجک گسسته, تبدیل موجک هار, تجزیه مقدار منفرد, نهان نگاری تصاویر دیجیتال, نهان نگاری تصاویر پزشکی, نهان نگاری مقاوم, نهان نگاری نیمه کور,
چکیده مقاله :
در کار با تصاویر پزشکی، اولویت اصلی تأمین امنیت اسناد بیمار در برابر هرگونه دستکاری توسط افراد غیرمجاز است؛ بنابراین، نگرانی اصلی سیستم پزشکی الکترونیکی موجود، ایجاد برخی از راهحلهای استاندارد برای حفظ اصالت و یکپارچگی محتوای تصاویر پزشکی است. بر این اساس نهان نگاری تصاویر دیجیتال زمینه های کاربردی فراوانی دارد، یکی از مهمترین کاربردهای آن در حفاظت از تصاویر پزشکی، حک کردن اسم ها، امضاها و مشخصات بیماران بر روی تصاویر، ویدئو ها و غیره می باشد به طوری که مشخص نخواهد بود. شیوه های مختلفی برای نهان نگاری تصاویر دیجیتال ارائه شده اند، اما در این بین یکی از پرکاربردترین روش ها جهت دستیابی به نهان نگاری مقاوم در برابر انواع حملات به کار گیری ترکیب حوزه تبدیل موجک گسسته و تجزیه مقدار منفرد می باشد. ما در این تحقیق از 2 مرحله تبدیل موجک هار روی تصویر میزبان و یک سطح تجزیه ی مقدار منفرد روی زیر گروه فرکانس پایین آن و ترکیب با ضریبی از نهان نگار و یک سطح دیگر تجزیه ی مقدار منفرد جهت جایگذاری نهان نگار و افزایش مقاومت نهان نگاری استفاده کرده ایم به صورتی که در زمان استخراج نهان نگار بتوان به صورت نیمه کورعمل کرد. با این روش توانسته ایم به طور متوسط به نسبت حداکثر سیگنال به نویز 55 و 7 درصد بهبود جهت غیر قابل مشاهده بودن نهان نگار و همچنین به طور متوسط به ضریب همبستگی 0.97 و 34 درصد بهبود جهت افزایش مقاومت نهان نگاری نسبت به حملات مختلف برسیم.
. In the handling of medical images, the main priority is to secure protection for the patient’s documents against any act of tampering by unauthorized persons. Thus, the main concern of the existing electronic medical system is to develop some standard solution to preserve the authenticity and integrity of the content of medical images.Accordingly, digital image watermarking has many applications, one of its most important applications in Protection of medical images, engrave names, Signatures and Patient data on pictures, Videos etc. that are not so clear.There are several ways to digital image watermarking, but one of the most widely used methods to achieve robust watermarking to all kinds of attacks using the combination dwt and svd.We used in this research 2 level of haar wavelet transform on the host image and one level of single value decomposition on its low frequency subset and combined with a watermark coefficient and another level of singular value decomposition to embed the watermark and increase the watermark robustness in a way that when extracting a watermark can be done semi-blindly. With this method, we were able to improve the average peak signal to noise ratio of 55 and 7% improvement for the invisibility of the watermark and also the average correlation coefficient of 0.97 and 34% improvement to increase the resistance of the watermark to various attacks.
[1] B. Yadav, A. Kumar, Y. Kumar, “A robust digital image watermarking algorithm using DWT and SVD”, Soft Computing: Theories and Applications, vol. 583, pp 25–36, 2018 (doi: 10.1007/978-981-10-5687-1_3).
[2] O. Jane, S. Elba, “Hybrid non-blind watermarking based on DWT and SVD”, Journal of Applied Research and Technology, pp. 750–761, vol. 12, no. 4, Aug. 2014 (doi: 10.1016/S1665-6423(14)70091-4).
[3] D. Thind, S. Jindal, “A semi blind DWT–SVD video watermarking”, Procedia Computer Science, vol. 46, pp. 1661-1667, April 2015 (doi: 10.1016/j.procs.2015.02.104).
[4] T. Pham, D. Tran, W. Ma, “A proposed blind DWT-SVD watermarking scheme for EEG data”, Proceeding of the ICONIP, pp. 69-76, Nov. 2015 (doi: 10.1007/978-3-319-26561-2_9).
[5] S.M. Mousavi, A. Naghsh, S. Abu-Bakar, “Watermarking techniques used in medical images: a survey”, Journal of Digital Imaging, vol. 27, no. 6, pp. 714-729, May. 2014 (doi: 10.1007/s10278-014-9700-5).
[6] R. Singh, D. Shaw, J. Sahoo, “A secure and robust block based DWT-SVD image watermarking approach”, Journal of Information and Optimization Sciences, vol. 38, no. 6, pp. 911-925, Oct. 2017 (doi: 10.1080/02522667.2017.1372137).
[7] R. Singh, D. Shaw, S. Jha, M. Kumar, “A DWT-SVD based multiple watermarking scheme for image based data security”, Journal of Information and Optimization Sciences, vol. 39, no. 1, pp. 67-81, 2018 (doi:10.1080/02522667.2017.1372153).
[8] S. Roy, A. Pal, “A hybrid domain color image watermarking based on DWT-SVD”, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 43, no. 2, pp. 201-217, June 2019 (doi: 10.1007/s40998-018-0109-x).
[9] M. Shanmugam, A. Chokkalingam, “Performance analysis of 2 level DWT-SVD based non blind and blind video watermarking using range conversion method”, Microsystem Technologies, vol. 24, no. 12, pp. 4757- 4765, 2018 (doi: 10.1007/s00542-018-3870-x).
[10] L. Kuang, Y. Zhang, X. Han, “A Medical image authentication system based on reversible digital watermarking”, Proceeding of the IEEE/ICISE, pp. 1047–1050, Nanjing, China, Dec. 2009 (doi: 10.1109/ICISE.2009.60).
[11] G. Bhatnagar, W. Jonathan, “Biometrics inspired watermarking based on a fractional dual tree complex wavelet transform”, Future Generation Computer Systems, vol. 29, no. 1, pp 182–195, 2013 (doi: 10.1016/j.future.2012.05.021).
[12] W. Pan, G. Coatrieux, N. Cuppens-Boulahia, F. Cuppens, C. Roux, “Medical image integrity control combining digital signature and lossless watermarking”, Data Privacy Management and Autonomous Spontaneous Security, pp 153–162, 2010 (doi: 10.1007/978-3-642-11207-2_12).
[13] K. Navas, M. Sasikumar, “Survey of medical image watermarking algorithms”, Proceeding of the IEEE/SETIT, pp. 1–6, Tunisia, March. 2007 (doi: 10.1007/s10278-014-9700-5).
[14] S. Mohanty, K. Ramakrishnan, “A dual watermarking technique for images”, Proceedings of the ACM, pp 49–51, Orlando Florida USA, Oct. 1999 (doi: 10.1145/319878.319891).
[15] N. Memon, A. Chaudhry, M. Ahmad, Z. Keerio, “Hybrid watermarking of medical images for ROI authentication and recovery”, International Journal of Computer Mathematics, vol. 88, no. 10, pp. 2057-2071, April. 2011 (doi: 10.1080/00207160.2010.543677).
[16] N. Memon, S. Gilani, “Watermarking of chest CT scan medical images for content authentication”, International Journal of Computer Mathematics, vol. 88, no. 2, pp. 265-280, 2011 (doi: 10.1080/00207161003596690).
[17] A. Cheddad, J. Condell, K. Curran, P. Kevitt, “Digital image steganography: Survey and analysis of current methods”, Signal Process, vol. 90, no. 3, pp. 727-752, March 2010 (doi: 10.1016/j.sigpro.2009.08.010).
[18] W. Adnan, S. Hitarn, S. Abdul-Karim, M. TamJis, “A review of image watermarking”, Proceeding of the IEEE/ SCOReD, pp. 381–384, Putrajaya, Malaysia, Aug. 2003 (doi: 10.1109/SCORED.2003.1459727).
[19] N. A. Memon, S. A. M. Gilani “NROI watermarking of medical images for content authentication”, Proceeding of the IEEE/INMIC, pp. 106–1110, Karachi, Pakistan, Dec. 2008 (doi: 10.1109/INMIC.2008.4777717).
[20] T. Le, K. Nguyen, H. Le, “Literature survey on image watermarking tools, watermark attacks, and benchmarking tools”, Proceeding of the IEEE/MMEGIA, pp. 67–73, Athens, Greece, June 2010 (doi: 10.1109/MMEDIA.2010.37).
[21] Z. Wenyin, F. Shih, “Semi-fragile spatial watermarking based on local binary pattern operators”, Optcom Communications, vol. 284, no. 16-17, pp. 3904-3912, Aug. 2011 (doi: 10.1016/j.optcom.2011.04.004).
[22] R.G.V. Schyndel, A. Tirkel, C. Osborne, “A digital watermark, in image processing proceedings”, Proceeding of the IEEE/ICIP, pp. 86–90, Austin, TX, USA, Nov. 1994 (doi: 10.1109/ICIP.1994.413536).
[23] M. S. Goli, A. Naghsh, “A comparative study of image-in-image steganography using three methods of least significant bit, discrete wavelet transform and singular value decomposition”, Bulletin de la Société Royale des Sciences de Liège, vol. 85, no. 1, pp. 1465 – 1474, 2016 (doi: 10.25518/0037-9565.6178).
[24] A. Ansari, S. Hong, G. Saavedra, B. Javidi, M. Martinez-Corral, “Ownership protection of plenoptic images by robust and reversible watermarking”, Optics and Lasers in Engineering, vol. 107, no. 1, pp.325- 334, Aug. 2018 (doi:10.1016/j.optlaseng.2018.03.028).
[25] R.A. Alotaibi, L.A. Elrefaei, “Text-image watermarking based on integer wavelet transform (IWT) and discrete cosine transform (DCT)”, Applied Computing and Informatics vol. 15 , no. 2, pp. 191-202, July 2019 (doi:10.1016/j.aci.2018.06.003).
_||_