یک مبدل بسیار کاهنده جدید با یکسوساز همزمان وکلیدزنی در ولتاژ صفر برای سوییچها
محورهای موضوعی : انرژی های تجدیدپذیرروح الله خرمی 1 , مجید دلشاد 2 * , هادی ثقفی 3
1 - دانشکده فنی مهندسی- واحد خوراسگان، دانشگاه آزاد اسلامی، خوراسگان، اصفهان، ایران
2 - دانشکده فنی مهندسی- واحد خوراسگان، دانشگاه آزاد اسلامی، خوراسگان، اصفهان، ایران
3 - دانشکده فنی مهندسی- واحد خوراسگان، دانشگاه آزاد اسلامی، خوراسگان، اصفهان، ایران
کلید واژه: مبدل بسیار کاهنده, افزایش بازده, استرس ولتاژ پایین, سوییچ یکسوساز همزمان,
چکیده مقاله :
در این مقاله یک مبدل بسیار کاهنده با یکسوساز همزمان ارایه گردیده است، بطوریکه سوییچ اصلی و سوییچ یکسوساز هردو بصورت نرم کلیدزنی می گردند. از آنجاییکه بهره مبدل پیشنهادی بسیار پایینتر از مبدل کاهنده عادی است. مشکلات مبدل باک عادی نظیر ضریب وظیفه باریک، استرس ولتاژ و جریان سوییچ بالا و...را ندارد. در مبدل پیشنهادی استرس ولتاژ روی سوییچ کاهش یافته است، در نتیجه می توان از سوییچ با مقاومت درین-سورس پایینتر استفاده نمود و تلفات هدایتی کاهش می یابد. از طرفی به علت آنکه دیودهای مدار نیز بصورت کلیدزنی در جریان صفر خاموش میشوند، مشکل بازیابی معکوس ندارند. تلفات کلیدزنی سوییچها نیز به خاطر عملکرد تحت شرایط کلیدزنی در ولتاژ صفر به شدت کاهش می یابد. از طرفی انرژی سلف نشتی در خازن خروجی تخلیه میگردد و بالازدگی ولتاژ دو سر المانها وجود ندارد. مبدل پیشنهادی به طور کامل تحلیل شده و برای اثبات درستی تحلیل ها ی مدار یک نمونه عملی 120 وات از آن ساخته شده است.
In this paper, a high step down converter with a synchronous rectifier is presented, so that both the main switch and the rectifier switch operate under soft switching condition. Since the proposed converter gain is much lower than the conventional buck converter, it does not have the problems of these converters such as narrow duty cycle, high voltage stress and high switch current, etc. In the proposed converter, the voltage stress on the switch is reduced, so a switch with lower drain-source resistance (RDS(ON)) can be used and the conduction losses are reduced. On the other hand, because the diodes of the circuit are switched off under zero current switching condition, do not have the problem of reverse recovery. Switching losses of the switches are also greatly reduced due to operating under zero voltage switching conditions. The proposed converter has been thoroughly analyzed and a practical 120 W prototype has been made to prove the correctness of the circuit analysis.
[1] Y. Bastan, A. Nejati, P. Amiri, “A triple-buck converter with zero-voltage transition base on the interleaved inductors”, Journal of Intelligence procedures in Electrical Technology, vol. 10, no. 38, pp. 43-50, Summer 2019 (in Persian).
[2] D. Taheri, G. Shahgholian, M.M. Mirtalaei, “Simulation of combined boost converter behavior with positive output voltage and investigation of voltage ripple at output”, Journal of Novel Researches on Electrical Power, vol. 9, no. 3, pp. 1-8, Autumn 2020 (in Persian).
[3] N. Hematian, M. Jabbari, “Simulation and implementation a non-isolated buck converter at ZCS condition” Journal of Intelligence procedures in Electrical Technology, vol. 4, no. 15, pp. 67-73, Summer 2013 (in Persian).
[4] K. Nishijima, K. Harada, T. Nakano, T. Nabeshima, T. Sato, “Analysis of double step-down two-phase buck converter for VRM”, Proceeding of the IEEE/INTELEC, pp. 497-502, Berlin, Germany, Sept. 2005 (doi: 10.1109/INTLEC.2005.335149)
[5] P. S. Shenoy, M. Amaro, J. Morroni, D. Freeman, “Comparison of a buck converter and a series capacitor buck converter for high-frequency, high-conversion-ratio voltage regulators”, IEEE Trans. on Power Electronics, vol. 31, no. 10, pp. 7006-7015, Oct. 2016 (doi:10.1109/TPEL.2015.2508018)
[6] O. Kirshenboim, M.M. Peretz, “High-efficiency nonisolated converter with very high step-down conversion ratio”, IEEE Trans. on Power Electronics, vol. 32, no. 5, pp. 3683-3690, May 2017 (doi: 10.1109/TPEL.2016.2589321)
[7] M. Uno, A. Kukita, “PWM switched capacitor converter with switched-capacitor-inductor cell for adjustable high step-down voltage conversion”, IEEE Trans. on Power Electronics., vol. 34, no. 1, pp. 425-437, Jan. 2019 (doi:10.1109/TPEL.2018.2822344).
[8] S. Ye, W. Eberle, Y.-F. Liu, “A novel non-isolated full bridge topology for VRM applications”, IEEE Trans. on Power Electronics, vol. 23, no. 1, pp. 427-437, Jan. 2008 (doi: 10.1109/TPEL.2007.911848).
[9] J. Wei, F.C. Lee, “Two novel soft-switched, high frequency, high efficiency, non-isolated voltage regulators-the phase-shift buck converter and the matrix-transformer phase-buck converter”, IEEE Trans. on Power Electronics, vol. 20, no. 2, pp. 292-299, March 2005 (doi:10.1109/TPEL.2004.843014).
[10] D. Grant, Y. Darroman, “Watkins-Johnson converter completes tapped inductor converter matrix”, Electronics Letters, vol. 39, no. 3, pp. 271-272, Feb. 2003 (doi: 10.1049/el:20030186).
[11] B.W. Williams, “Unified synthesis of tapped-inductor dc-to-dc converters”, IEEE Trans. on Power Electronics, vol. 29, no. 10, pp. 5370-5383, Oct. 2014 (doi:10.1109/TPEL.2013.2291561).
[12] T. Urabe, K. Nishijima, T. Sato, T. Nabeshima, “Power loss analysis of tapped-inductor buck converter for home DC power supply system”, Proceeding of the IEEE/ICRERA, pp. 751-756, Madrid, Spain, Oct. 2013 (doi:10.1109/ICRERA.2013.6749853).
[13] K. Jin, L. Gu, W. Cao, X. Ruan, M. Xu, “Nonisolated flyback switching capacitor voltage regulator”, IEEE Trans. on Power Electronics, vol. 28, no. 8, pp. 3714-3722, Aug. 2013 (doi:10.1109/ECCE.2011.6064206).
_||_[1] Y. Bastan, A. Nejati, P. Amiri, “A triple-buck converter with zero-voltage transition base on the interleaved inductors”, Journal of Intelligence procedures in Electrical Technology, vol. 10, no. 38, pp. 43-50, Summer 2019 (in Persian).
[2] D. Taheri, G. Shahgholian, M.M. Mirtalaei, “Simulation of combined boost converter behavior with positive output voltage and investigation of voltage ripple at output”, Journal of Novel Researches on Electrical Power, vol. 9, no. 3, pp. 1-8, Autumn 2020 (in Persian).
[3] N. Hematian, M. Jabbari, “Simulation and implementation a non-isolated buck converter at ZCS condition” Journal of Intelligence procedures in Electrical Technology, vol. 4, no. 15, pp. 67-73, Summer 2013 (in Persian).
[4] K. Nishijima, K. Harada, T. Nakano, T. Nabeshima, T. Sato, “Analysis of double step-down two-phase buck converter for VRM”, Proceeding of the IEEE/INTELEC, pp. 497-502, Berlin, Germany, Sept. 2005 (doi: 10.1109/INTLEC.2005.335149)
[5] P. S. Shenoy, M. Amaro, J. Morroni, D. Freeman, “Comparison of a buck converter and a series capacitor buck converter for high-frequency, high-conversion-ratio voltage regulators”, IEEE Trans. on Power Electronics, vol. 31, no. 10, pp. 7006-7015, Oct. 2016 (doi:10.1109/TPEL.2015.2508018)
[6] O. Kirshenboim, M.M. Peretz, “High-efficiency nonisolated converter with very high step-down conversion ratio”, IEEE Trans. on Power Electronics, vol. 32, no. 5, pp. 3683-3690, May 2017 (doi: 10.1109/TPEL.2016.2589321)
[7] M. Uno, A. Kukita, “PWM switched capacitor converter with switched-capacitor-inductor cell for adjustable high step-down voltage conversion”, IEEE Trans. on Power Electronics., vol. 34, no. 1, pp. 425-437, Jan. 2019 (doi:10.1109/TPEL.2018.2822344).
[8] S. Ye, W. Eberle, Y.-F. Liu, “A novel non-isolated full bridge topology for VRM applications”, IEEE Trans. on Power Electronics, vol. 23, no. 1, pp. 427-437, Jan. 2008 (doi: 10.1109/TPEL.2007.911848).
[9] J. Wei, F.C. Lee, “Two novel soft-switched, high frequency, high efficiency, non-isolated voltage regulators-the phase-shift buck converter and the matrix-transformer phase-buck converter”, IEEE Trans. on Power Electronics, vol. 20, no. 2, pp. 292-299, March 2005 (doi:10.1109/TPEL.2004.843014).
[10] D. Grant, Y. Darroman, “Watkins-Johnson converter completes tapped inductor converter matrix”, Electronics Letters, vol. 39, no. 3, pp. 271-272, Feb. 2003 (doi: 10.1049/el:20030186).
[11] B.W. Williams, “Unified synthesis of tapped-inductor dc-to-dc converters”, IEEE Trans. on Power Electronics, vol. 29, no. 10, pp. 5370-5383, Oct. 2014 (doi:10.1109/TPEL.2013.2291561).
[12] T. Urabe, K. Nishijima, T. Sato, T. Nabeshima, “Power loss analysis of tapped-inductor buck converter for home DC power supply system”, Proceeding of the IEEE/ICRERA, pp. 751-756, Madrid, Spain, Oct. 2013 (doi:10.1109/ICRERA.2013.6749853).
[13] K. Jin, L. Gu, W. Cao, X. Ruan, M. Xu, “Nonisolated flyback switching capacitor voltage regulator”, IEEE Trans. on Power Electronics, vol. 28, no. 8, pp. 3714-3722, Aug. 2013 (doi:10.1109/ECCE.2011.6064206).