فیلتر کالمن دو بعدی تعمیم یافته به منظور تخمین دمای درونی باتری بدون استفاده از حسگر
محورهای موضوعی : انرژی های تجدیدپذیرمحسن غلامرضایی 1 , محمد طلوع عسکری سدهی اصفهانی 2 *
1 - کارشناسی ارشد - گروه مهندسی برق، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران
2 - استادیار - گروه مهندسی برق و الکترونیک، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران
کلید واژه: امپدانس الکتروشیمیایی, تخمین دمای باتری, فیلتر کالمن دو بعدی, مدل حرارتی,
چکیده مقاله :
چکیده: دیدگاهها و روشهای متداول برای تخمین دمای داخلی باتری از مدلهای عددی الکتریکی- حرارتی استفاده میکنند که در آنها نیاز به حسگر دما ضروری است. به منظور تضمین استفاده ایمن و درست از باتریهای لیتیوم- یون در طول عمل، برآورد دقیق از درجه حرارت باتری از اهمیت ویژهای برخوردار است. در این مقاله روشی برای تخمین دمای هسته سلول باتری و سطح باتری با استفاده از یک مدل حرارتی کوپل شده با مدل امپدانس الکتریکی بدون اندازهگیری مستقیم دمای سطح ارائه میشود. بدین منظور یک فیلتر کالمن دو بعدی توسعه یافته (DEKF) متشکل از یک مدل حرارتی مرتبه کاهش یافته به همراه اندازهگیری جریان، ولتاژ و امپدانس می تواند با دقت زیادی دمای هسته سلول و سطح باتری را تخمین بزند. کارایی این روش از طریق آزمایش بر روی یک سلول 2.3 آمپر- ساعتی یون لیتیومی شامل فسفات آهن با ترموکوپل های سطح و هسته نشان داده شده است.
Abstract: The conventional approaches for estimating internal battery temperature use numerical electric-thermal models in which a temperature sensor is required. In order to ensure safe and proper use of lithium-ion batteries during operation, accurate estimation of battery temperature is very important. In this paper, a method for estimating the surface and core temperature of the battery cell is presented using a coupled thermal model with an electrical impedance model without direct measurement of surface temperature. For this purpose, a dual extended Kalman filter (DEKF) consisting of a reduced thermal model along with battery current, voltage and impedance measurement can accurately estimate the temperature of the battery surface and core. The performance of the method is demonstrated experimentally on a 2.3-Ah lithium-ion iron phosphate cell fitted with surface and core thermo-couples for validation. The performance of the method is demonstrated experimentally on a 2.3-Ah lithium-ion iron phosphate cell fitted with surface and core thermo-couples for validation
[1] P. Sabine, M. Perrin, A. Jossen,"Methods for state-of-charge determination and their applications", Journal of Power Sources, Vol. 96, No. 1, pp. 113-120, Jun. 2001 (doi: 10.1016/S0378-7753(01)00560-2).
[2] C.B. Zhu, M. Coleman, W.G. Hurley, "State of charge determination in a lead-acid battery: combined EMF estimation and Ah-balance approach", Proceeding of the IEEE/PESC, Vol. 3, pp. 1908-1914. June 2004 (doi: 10.1109/PESC.2004.1355409).
[3] R. Markolf, D. Ohms, G. Müller, C. Schulz, J. Harmel, K. Wiesener, "Investigations into a battery management for high power nickel metal hydride batteries", Journal of Power Sources, Vol.154,No.2, pp.539-544, Mar. 2006 (doi:10.1016/j.jpowsour.2005.10.039).
[4] F. Huet, "A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries", Journal of Power Sources, Vol.70, No.1, pp.59-69,Jan. 1998 (https://doi.org/10.1016/S0378-7753(97)02665-7).
[5] BS. Bhangu, S. Bikramjit, P. Bentley, A. Stone, M. Bingham, "Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles", IEEE Transactions on Vehicular Technology, Vol.54, No.3, pp.783-794, May. 2005 (doi: 10.1109/TVT.2004.842461).
[6] D. Dennis, S.A. Sharkh, "A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries", Journal of Power Sources, Vol.155, No.2, pp.395-400, April 2006 (doi: 10.1016/j.jpowsour.2005.04.030).
[7] P. Shuo, J. Farrell, J. Du, M. Barth,"Battery state-of-charge estimation", Proceedings of the American Control Conference Arlington, (Cat. No. 01CH37148), vol.2, pp.1644-1649. IEEE, Jun. 2001 (doi: 10.1109/ACC.2001.945964).
[8] M. Verbrugge, E. Tate, "Adaptive state of charge algorithm for nickel metal hydride batteries including hysteresis phenomena", Journal of Power Sources, Vol.126, no.1-2, pp.236–249, FEB. 2004 (doi: 10.1016/j.jpowsour.2003.08.042).
[9] J.Chiasson, B.Vairamohan," Estimating the state of charge of a battery", Proceedings of the American Control Conference Denver, Colorado, vol.4, pp.2863-2868, Jun. 2003 (doi: 10.1109/ACC.2003.1243757)
[10] M Dürr, A Cruden, S Gair, JR McDonald," Dynamic model of a lead acid battery for use in a domestic fuel cell system", Journal of power Sources,Vol.161, no.2 , pp.1400-1411, Oct. 2006 (doi: 10.1016/j.jpowsour.2005.12.075)
[11] C. Forgez, D. Vinh Do, G. Friedrich, M. Morcrette, C. Delacourt, "Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery", Journal of Power Sources, Vol.195, no.9, pp.2961-2968, May. 2010 (doi: 10.1016/j.jpowsour.2009.10.105).
[12] Y. Kim, S. Mohan, J.B. Siegel, A.G. Stefanopoulou, Y. Ding, "The estimation of temperature distribution in cylindrical battery cells under unknown cooling conditions", IEEE Trans. on Control Systems Technology, vol. 22, no. 6, pp. 2277–2286, Nov. 2014 (doi:10.1109/TCST.2014.2309492).
[13] Lin, Xinfan, Hector E. Perez, Jason B. Siegel, Anna G. Stefanopoulou, Yonghua Li, R. Dyche Anderson, Yi Ding, and Matthew P. Castanier, "Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring", IEEE Trans. Control Syst. Technol., vol.21, no.5, pp.1745–1755, Sep. 2013 (doi: 10.1109/TCST.2012.2217143).
[14] A. Pesaran, G. H. Kim, and M. Keyser, "Integration issues of cells into battery packs for plug-in and hybrid electric vehicles", in Proc. Int. Battery Hybrid Fuel Cell Elect. Veh. Symp, Stavanger, Norway, pp.1–7, May 2009.
[15] R. Srinivasan, "Monitoring dynamic thermal behavior of the carbon anode in a lithium-ion cell using a four-probe technique", Journal of Power Sources, vol.198, pp.351–358, Jan.2012 (doi: 10.1016/j.jpowsour.2011.09.077)
[16] JP Schmidt, S Arnold, A Loges, D Werner, T. Wetzel, E. Ivers-Tiffée, "Measurement of the internal cell temperature via impedance: Evaluation and application of a new method", Journal of Power Sources, vol.243, pp.110–117, Jun.2013 (doi: 10.1016/j.jpowsour.2013.06.013)
[17] LD. Danilov, J. van Lammeren, M. Lammers, and P. Notten, "Sensorless battery temperature measurements based on electrochemical impedance spectroscopy", Journal of Power Sources, vol. 247, pp.539–544, Feb.2014 (doi: 10.1016/j.jpowsour.2013.09.005)
[18] DA Howey, PD Mitcheson, V Yufit, "On-line measurement of battery impedance using motor controller excitation", IEEE Trans. Veh. Technol., vol.63, no.6, pp.2557–2566, Jul.2014 (doi: 10.1109/ TVT.2013.2293597)
[19] N Brandon, P Mitcheson, DA Howey, V Yufit, GJ Offer, "Battery monitoring in electric vehicles, hybrid vehicles and other applications", WO2012025706 A1, 2012.
[20] RR Richardson, PT Ireland, DA Howey "Battery internal temperature estimation by combined impedance and surface temperature measurement". Journal of Power Sources, Vol.265, pp.254-261, Nov.2014 (doi: 10.1016/j.jpowsour.2014.04.129
[21] RR Richardson, DA Howey, "Sensorless battery internal temperature estimation using a kalman filter with impedance measurement". IEEE Transactions on Sustainable Energy, Vol.6, no.4, pp.1190-1199, Oct.2015 (doi: 10.1109/TSTE.2015.2420375)
[22] J Zhu, Z Sun, X Wei, H Dai, "Battery internal temperature estimation for lifepo4 battery based on impedance phase shift under operating conditions." Energies, Vol.10, no.1, pp.60, Jan.2017 (doi: 10.1155/2018/9642892).
[23] K. Liu, K. Li, Q. Peng, Y. Guo, L. Zhang, "Data-driven hybrid internal temperature estimation approach for battery thermal management", Complexity, Article ID 9642892, pp. 1-15, 2018 (doi: 10.1155/2018/9642892).
[24] J Zhu, Z Sun, X Wei, H Dai, "Battery internal temperature estimation for lifepo4 battery based on impedance phase shift under operating conditions", Energies.;vol. 10, pp.1-60, Jan2017 (doi: 10.3390/en10010060).
[25] PS Maybeck, "Stochastic models, estimation, and control", vol.2. AcademicPress, Aug.1982.
[26] AH Jazwinski, "Stochastic processes and filtering theory" .vol.64 of Mathematics in science and engineering. Academic Press, Inc. London. 1970.
[27] D. Bernardi, E. Pawlikowski, J. Newman, "A general energy balance for battery systems", Journal of the Electrochemical Society, Vol. 132, No. 1, pp. 5-12, Jan.1985 (doi: 10.1149/1.2113792).
[28] CR Birkl, DA Howey, "Model identification and parameter estimation for LiFePO4 batteries", Vol.2, pp.1, 2013 (doi: 10.1049/cp.2013.1889)
[29] C Forgez, DV Do, G Friedrich, M Morcrette, C. Delacourt, "Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery". Journal of Power Sources, Vol.195, no.9, pp.2961-2968, May.2010 (doi: 10.1016/j.jpowsour.2009.10.105)
[30] Y Kim, JB Siegel, AG. Stefanopoulou, "A computationally efficient thermal model of cylindrical battery cells for the estimation of radially distributed temperatures", In American Control Conference (ACC), pp.698-703, IEEE, June.2013 (doi: 10.1109/ACC.2013.6579917).
[31] RR Richardson, DA Howey, "Sensorless battery internal temperature estimation using a kalman filter with impedance measurement". IEEE Transactions on Sustainable Energy, Vol. 6(4), pp. 1190-1199, June2015 (doi: 10.1109/TSTE.2015.2420375).
_||_