طراحی و ساخت یک مبدل بوست-فلای بک بهره بالا با سوئیچینگ نرم
محورهای موضوعی : انرژی های تجدیدپذیرقاسم حق شناس جزی 1 , سید محمد مهدی میرطلائی 2
1 - کارشناسی ارشد- دانشکده مهندسی برق، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
2 - استادیار- دانشکده مهندسی برق، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
کلید واژه: کلیدزنی نرم, مبدل بوست- فلای بک, مبدل بهره بالا,
چکیده مقاله :
در این مقاله یک مبدل بوست-فلای بک با بهره بالا و کلید زنی نرم پیشنهاد شده است. کاربرد اصلی این مبدل در اتصال آرایههای خورشیدی به شبکه برای تولید برق میباشد. از آنجایی که در این کاربردها اختلاف سطح ولتاژ ورودی وخروجی مبدل زیاد است، نمی توان از مبدل های بوست و باک-بوست پایه استفاده کرد، زیرا این مبدلها در ضریب وظیفه های نزدیک به یک دچار افت شدیدی در بازده می شوند. از این رو یک مبدل بهره بالای بوست فلای بک با سوئچینگ نرم جهت برطرف کردن مشکلات مبدل بوست پایه ارائه شده است که علاوه بر داشتن ضریب وظیفه مناسب در بهره های بالا، از مزایایی نظیر استرس ولتاژ بسیار کمتر از ولتاژ خروجی و شرایط سوئیچینگ نرم نیز برخوردار است. همچنین به دلیل اینکه در مبدل پیشنهادی از هیچ سوئیچ و یا هسته مغناطیسی اضافهای جهت برقراری شرایط سوئیچینگ نرم استفاده نشده است تعداد المان مبدل نسبت به مبدل بوست فلای بک پایه افزایش چندانی نیافته است. عملکرد مبدل ابتدا به صورت تحلیلی مورد بررسی قرار گرفته سپس یک نمونه از مبدل پیشنهادی برای ولتاژ ورودی 40 ولت، ولتاژ خروجی 400 ولت و توان 100 وات در نرم افزار PSPICE شبیه سازی شده و نهایتا به صورت عملی پیاده سازی شدهاست تا نتایج تحلیلی و شبیهسازی مورد ارزیابی قرار گیرد.
In this paper a new soft switching boost-flyback converter is introduced to eliminate conventional boost-flyback converter problems in the high voltage applications. The main application of this converter is conction of PV system to the power system. In the proposed converter not only the operating duty cycles proper in high voltage gains but also the switch voltage stress is lower than output voltage. Also, in the proposed converter any auxiliary switch or magnetic core has not been used so the number of converter components has not increased much in comparison with the conventional boost-flyback converter. The operation principles of the proposed converter and its theoretical operation waveforms is presented. In order to justify the theoretical analysis, a prototype of the proposed converter is designed, simulated and experimentally implemented. The simulation and practical results are presented for a 100w boost-flyback converter with input voltage of 40V and output voltage of 400V.
[1] R.W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA, USA: Kluwer, 2001.
[2] S.M.M. Mirtalaei, M. Mohtaj, H.R. Karami, “Design and implementation of a high step-up boost-Sepic hybrid converter with soft switching”, Journal of Intelligent Procedures in Electrical Technology, Vol. 6, No. 24, pp. 27-34, Winter 2016.
[3] Q. Zhao, F. Tao, F. C. Lee, P. Xu, J.Wei, “A simple and effective to alleviate the rectifier reverse-recovery problem in continuous-current-mode boost converter”, IEEE Trans. Power Electron., Vol. 16, No. 5, pp. 649–658, Sep. 2001.
[4] Q. Zhao, F.C. Lee, “High-efficiency, high step-upDC–DCconverters”, IEEE Trans. Power Electron., Vol. 18, No. 1, pp. 65–73, Jan. 2003.
[5] W. Li, X. He, “Review of non-isolated high step-up DC/DC converters in photovoltaic grid-connected applications”, IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp. 1239–1250, Apr. 2011.
[6] N.P. Papanikolaou, E.C. Tatakis, “Active voltage clamp in flyback converters operating in CCM mode under wide load variation”, IEEE Trans. Ind. Electron., Vol. 51, No. 3, pp. 632–640, Jun. 2004.
[7] B.R. Lin, F.Y. Hsieh, “Soft-switching zeta–flyback converter with a buck–boost type of active clamp”, IEEE Trans. Ind. Electron., Vol. 54, No. 5, pp. 2813–2822, Oct. 2007.
[8] C.M. Wang, “A novel ZCS-PWM flyback converter with a simple ZCS PWM commutation cell”, IEEE Trans. Ind. Electron., Vol. 55, No. 2, pp. 749–757, Feb. 2008.
[9] J. M. Kwon, B.H. Kwon, “High step-up active-clamp converter with input-current doubler and output-voltage doubler for fuel cell power systems”, IEEE Trans. Power Electron., Vol. 24, No. 1, pp. 108–115, Jan. 2009.
[10] L. Zhu, “A novel soft-commutating isolated boost full-bridge ZVS-PWM DC–DC converter for bidirectional high power applications”, IEEE Trans. Power Electron., Vol. 21, No. 2, pp. 422–429, Mar. 2006.
[11] R.J. Wai, W.H. Wang, C.Y. Lin, “High-performance stand-alone photovoltaic generation system”, IEEE Trans. Ind. Electron., Vol. 55, No. 1, pp. 240–250, Jan. 2008.
[12] R.J. Wai, W.H. Wang, “Grid-connected photovoltaic generation system”, IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 55, No. 3, pp. 953–964, Apr. 2008.
[13] M. Prudente, L.L. Pfitscher, G. Emmendoerfer, E.F. Romaneli, R. Gules, “Voltage multiplier cells applied to non-isolated DC–DC converters”, IEEE Trans. Power Electron., Vol. 23, No. 2, pp. 871–887, Mar. 2008.
[14] F. Zhang, L. Du, F.Z. Peng, Z. Qian, “A new design method for high power high-efficiency switched-capacitor DC–DC converters”, IEEE Trans. Power Electron., Vol. 23, No. 2, pp. 832–840, Mar. 2008.
[15] E.H. Ismail, M.A. Al-Saffar, A.J. Sabzali, A.A. Fardoun, “A family of single-switch PWM converters with high step-up conversion ratio”, IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 55, No. 4, pp. 1159–1171, May 2008.
[16] B. Axelrod, Y. Berkovich, A. Ioinovici, “Switched-capacitor/ switched-inductor structures for getting transformerless hybrid DC–DC PWM converters”, IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 55, No. 2, pp. 687–696, Mar. 2008.
[17] L.S. Yang, T. J. Liang, H. C. Lee, and J. F. Chen, “Novel high step-up DC–DC converter with coupled-inductor and voltage-doubler circuits”, IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 4196–4206, Sep. 2011.
[18] S.K. Changchien, T.J. Liang, J.F. Chen, L.S. Yang, “Novel high step-up DC–DC converter for fuel cell energy conversion system”, IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 2007–2017, Jun. 2010.
[19] Y.P. Hsieh, J.F. Chen, T.J. Liang, L.S. Yang, “A novel high step-up DC–DC converter for a microgrid system”, IEEE Trans. Power Electron., Vol. 26, No. 4, pp. 1127–1136, Apr. 2011.
[20] W. Li, X. He, “A family of interleaved DC/DC Converters deduced from a basic cell with winding-cross-coupled inductors (WCCIs) for high step-up or step-down conversions”, IEEE Trans. Power Electron., Vol. 22, No. 4, pp. 1499–1507, Jul. 2008.
[21] W. Li, X. He, “ZVT interleaved boost converters for high-efficiency, high-step-up DC/DC conversion”, IET-Elect. Power Appl., Vol. 1, No. 2, pp. 284–290, Mar. 2007.
[22] W. Li, Y. Zhao, J. Wu, X. He, “Interleaved high step-up converter with winding-cross-coupled inductors and voltage multiplier cells”, IEEE Trans. Power Electron., Vol. 27, No. 1, pp. 133–143, Jan. 2012.
[23] G.A. L. Henn, R.N.A.L. Silva, P.P. Praca, L.H.S.C. Barreto, D.S. Oliveira, Jr., “Interleaved-boost converter with high voltage gain”, IEEE Trans. Power Electron., Vol. 25, No. 11, pp. 2753–2761, Nov. 2010.
[24] W. Li, Y. Zhao, Y. Deng, X. He, “Interleaved converter with voltage multiplier cell for high step-up and high efficiency conversion”, IEEE Trans. Power Electron., Vol. 25, No. 9, pp. 2397–2408, Sep. 2010.
[25] Y.T. Jang, M.M. Jovanovic, “Interleaved boost converter with intrinsic voltage-doubler characteristic for universal-line PFC front end”, IEEE Trans. on Power Electron., Vol. 22, No. 4, pp. 1394–1401, Jul. 2007.
[26] L.S. Yang, T.J. Liang, J.F. Chen, “Transformerless DC–DC converters with high step-up voltage gain”, IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 3144–3152, Aug. 2009.
[27] A.A. Fardoun, E.H. Ismail, “Ultra step-up DC–DC converters with reduced switch stress”, IEEE Trans. Ind. Appl., Vol. 46, No. 5, pp. 2025– 2034, Oct. 2010.
[28] W. Li, X. Xiang, C. Li,W. Li, X. He, “Interleaved high Step-Up ZVT converter with built-in transformer voltage doubler cell for distributed PV generation system”, IEEE Trans. Ind. Electron., Vol. 28, No. 1, pp. 300– 313, Jan. 2013.
[29] S. Lee, P. Kim, S. Choi, “High step-up soft-switched converters using voltage multiplier cells”, IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 3379–3387, Jul. 2013.
[30] K.C. Tseng, C.C. Huang, W.Y. Shih, “A high step-up converter with a voltage multiplier module for a photovoltaic system”, IEEE Trans. Power Electron, Vol. 28, No. 6, pp. 3047–3057, Jun. 2013.
[31] W. Li, Y. Zhao, J. Wu, X. He, “Interleaved high step-up converter with winding-cross-coupled inductors and voltage multiplier cells”, IEEE Trans. Power Electron., Vol. 27, No. 1, pp. 133–143, Jan. 2012.
[32] S.M. Chen, T.J. Liang, L. S.Yang, J. F.Chen, “A boost converter with capacitor multiplier and coupled inductor for AC module applications”, IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp. 1503–1511, Apr. 2013.
[33] C.M. Lai, C.T. Pan, M.C. Cheng, “High-efficiency modular high step-up interleaved boost converter for DC-microgrid applications”, IEEE Trans. Ind. Electron., Vol. 48, No. 1, pp. 161–171, Jan./Feb. 2012.
[34] C. Chun-Kit, T. Siew-Chong, C.K. Tse, A. Ioinovici, “On energy efficiency of switched-capacitor converters”, IEEE Trans. Power Electron., Vol. 28, No. 2, pp. 862–876, Feb. 2013.
[35] Z. Ke, M. J. Scott, W. Jin, “Switched-Capacitor-Cell-Based voltage multipliers and DC–AC inverters”, IEEE Trans. Ind. Appl., Vol. 48, No. 5, pp. 1598–1609, Sep./Oct. 2012.
[36] Y. Lei, R.C.N. Pilawa-Podgurski, “Analysis of Switched-capacitor DC–DCConverters in Soft-charging Operation”, in Proc. IEEE14thWorkshop Control Model. Power Electron., pp. 1–7, 2013.
[36] L.H.S.C. Barreto, P. Peixoto Praca, D.S. Oliveira, R.N.A.L. Silva, “High-Voltage gain boost converter based on three-state commutation cell for battery charging using PV panels in a single conversion stage”, IEEE Trans. Power Electron., Vol. 29, No. 1, pp. 150–158, Jan. 2014.
_||_