برررسی ارزیابی ریسک اعتباری با استفاده از شاخص های موثر بر تخمین رابطه میان توسعه مالی و رشد اقتصادی- رویکرد مارکوف سوئیچینگ
محورهای موضوعی :
دانش سرمایهگذاری
سیدفضل اله انیران
1
,
سیدعلی نبوی چاشمی
2
,
علی ثریایی
3
1 - دانشجو دکتری، گروه مدیریت، واحد بابل ، دانشگاه آزاد اسلامی، بابل، ایران
2 - دانشیار، گروه مدیریت، واحد بابل ، دانشگاه آزاد اسلامی، بابل، ایران.
3 - استادیار، گروه مدیریت، واحد بابل ، دانشگاه آزاد اسلامی، بابل، ایران
تاریخ دریافت : 1399/10/14
تاریخ پذیرش : 1400/03/12
تاریخ انتشار : 1403/07/01
کلید واژه:
ریسک اعتباری,
بازده سرمایه گذاری,
توسعه مالی,
رشد اقتصادی,
چکیده مقاله :
در حال حاضر به دلیل نوسان های اقتصادی در ایران، بازده سرمایه گذاری بانکها در ایران دچار تحول بزرگی شده است. یکی از چالشهای مهم پیش روی سرمایه گذاران بانک، تخصیص موثر پولشان به پروژه ها و ارزیابی دقیق ریسک اعتباری می باشد. عوامل مختلفی بر ریسک اعتباری بانک ها موثر است که در این مطالعه به بررسی و تعیین متغیرهای موثر بر تخمین ریسک اعتباری و سپس تعیین تاثیر ریسک اعتباری بر عملکرد بازده سرمایه گذاری پرداخته می شود. برای این منظور سه فرضیه تعیین و از داده های سالانه شرکت های عضو بورس اوراق بهادار تهران در دوره 1380-1399 برای آزمون فرضیه استفاده شد. روش مورد بررسی دارای دارای دومرحله است بطوریکه ابتدا در مرحله اول از روش مارکوف سوئیچینگ برای انتخاب متغیرهای تاثیرگذار بر ریسک اعتباری استفاده می شود و برای این منظور از بررسی رابطه میان شاخص های مهمی همچون توسعه مالی و رشد اقتصادی استفاده می شود. پس از آن در مرحله دوم، از متغیرهای مهم و تاثیرگذار منتخب در مرحله اول برای تخمین ریسک اعتباری و تاثیرش بر بازده سرمایه گذاری بانکها استفاده می شود. یافته های حاصل از پژوهش نشان داد که متغیرهایی از جمله نرخ بهره، تورم، نسبت اعتبار داخلی به بخش خصوصی و نرخ ارز تأثیر قابل توجه و مثبتی بر ریسک اعتباری دارند و متغیرهایی همچون سرمایه گذاری خارجی مستقیم و نرخ رشد تولید ناخالص داخلی واقعی سالیانه تاثیر منفی و معناداری بر ریسک اعتباری دارند و ریسک اعتباری تاثیر منفی و معناداری بر بازده سرمایه گذاری دارد.
چکیده انگلیسی:
Currently, due to economic fluctuations in Iran, the investment return of banks in Iran has undergone a major transformation. One of the major challenges facing bank investors is effectively allocating their money to projects and accurately assessing credit risk. Various factors affect the credit risk of banks. In this paper, the effective variables on credit risk estimation are examined and then the effect of credit risk on investment return performance is determined. For this purpose, three hypotheses were determined and the annual data of the member companies of the Tehran Stock Exchange in the period 2001-2021 were used to test the hypothesis. The study method has two stages, so that in the first stage, the Markov switching method is used to select variables affecting credit risk and for this purpose, the relationship between important indicators such as financial development and economic growth. Then, in the second stage, the important and effective variables selected in the first stage are used to estimate the credit risk and its impact on investment returns. Findings from the study showed that variables such as interest rate, inflation, ratio of domestic credit to private sector and exchange rate have a significant and positive effect on credit risk and variables such as foreign direct investment and annual real GDP growth have negative and significant effect on credit risk and credit risk has a negative and significant effect on investment returns.
منابع و مأخذ:
ارضاء، امیرحسین و صیفی، فرناز، (1399)، تاثیر ریسکهای مالی بر کارایی شرکتهای بورس اوراق بهادار تهران، دانش مالی تحلیل اوراق بهادار، دوره سیزدهم، شماره چهل و پنجم.
دل افروز، نرگس، همایون فر، مهدی و تقی پور تمیجانی، (1398)، مدیریت ریسک اعتباری در بانک ها با استفاده از رویکرد ترکیبی، فصلنامه مهندسی مالی و مدیریت اوراق بهادار، دوره دهم، شماره سی و هشتم.
زنگنه، احسان و همکاران، (1399)، تأثیر متغیرهای کالن اقتصادی در سیکلهای نکول اعتباری در بازار متشکل پولی کشور، فصلنامه پژوهشهای پولی-بانکی، سال دوازدهم، شماره چهل و یک.
ملک محمدی، محمدرضا، سعیدی، علی و متین رد، مهران، (1399)، بررسی عوامل سیستماتیک و غیر سیستماتیک موثر بر ریسک اعتباری در نظام بانکداری ایران، بورس اوراق بهادار دوره سیزدهم، شماره چهل و نهم.
ملکی، علی و همکاران، (1399)، ارایه مدل بهینه ریسک اعتباری فرایند تامین مالی جمعی با استفاده از شبکه عصبی پرسپترون چندلایه (MLP)، فصلنامه مهندسی مالی و مدیریت اوراق بهادار، دوره یازدهم، شماره چهل و سه.
Arora, N., & Kaur, P. D. (2020). A Bolasso based consistent feature selection enabled random forest classification algorithm: An application to credit risk assessment. Applied Soft Computing, 86, 105936.
Abdelaziz, H., Rim, B., & Helmi, H. (2020). The interactional relationships between credit risk, liquidity risk and bank profitability in MENA region. Global Business Review, 0972150919879304.
Bagehot, W. J. R. I. (1962). Lombard street, homewood.
Basel Committee on Banking Supervision (BCBS).(2000). Principles for the Management of Credit Risk; Bank for International Settlements: Basel, Switzerland.
Botev, J., Égert, B., & Jawadi, F. J. I. E. (2019). The nonlinear relationship between economic growth and financial development: Evidence from developing, emerging and advanced economies. 160, 3-13.
Cosslett, S. R., & Lee, L.-F. J. J. o. E. (1985). Serial correlation in latent discrete variable models. 27(1), 79-97.
García, F., Guijarro, F., & Moya, I. J. S. B. (2013). Monitoring credit risk in the social economy sector by means of a binary goal programming model. 7(3), 483-495.
Golbayani, P., Florescu, I., & Chatterjee, R. (2020). A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees. The North American Journal of Economics and Finance, 54, 101251.
Gubareva, M., Keddad, B. J. I. J. o. F., & Economics. (2020). Emerging markets financial sector debt: A Markov‐switching study of interest rate sensitivity.
Hamilton, J. D. (2010). Regime switching models. In Macroeconometrics and time series analysis (pp. 202-209): Springer.
Huang, X., Liu, X., & Ren, Y. J. C. S. R. (2018). Enterprise credit risk evaluation based on neural network algorithm. 52, 317-324.
Jreisat, A. J. I. J. o. E., & Research, B. (2020). Credit risk, economic growth and profitability of banks. 20(2), 152-167.
Kirikkaleli, D., & Gokmenoglu, K. K. (2020). Sovereign credit risk and economic risk in Turkey: Empirical evidence from a wavelet coherence approach. Borsa Istanbul Review, 20(2), 144-152.
Maddala, G. S., & Nelson, F. D. (1975). Switching regression models with exogenous and endogenous switching. Paper presented at the Proceedings of the American Statistical Association.
Ndebbio, J. U. (2004). Financial deepening, economic growth and development: Evidence from selected sub-Saharan African Countries.
Nguyen, C. P., Schinckus, C., Su, T. D., & Chong, F. J. R. o. d. f. (2018). Institutions, inward foreign direct investment, trade openness and credit level in emerging market economies. 8(2), 75-88.
Teles, G., Rodrigues, J. J., Rabê, R. A., Kozlov, S. A. J. J. o. A. I., & Systems. (2020). Artificial neural network and Bayesian network models for credit risk prediction. 2, 118-132.
Van Gestel, T., & Baesens, B. (2008). Credit Risk Management: Basic concepts: Financial risk components, Rating analysis, models, economic and regulatory capital: OUP Oxford.
Zhu, Y., Xie, C., Sun, B., Wang, G.-J., & Yan, X.-G. J. S. (2016). Predicting China’s SME credit risk in supply chain financing by logistic regression, artificial neural network and hybrid models. 8(5), 433.
Yazdanpanah, A., Shakib, S. (2009). Effective factors on banks liquidity risk (Bank Mellat case study). Financial Knowledge of Securities Analysis, 99 (2):27-54. (in Persian).
_||_