خوشه بندی نوسانات و عدم تقارن آن در بورس اوراق بهادار تهران
محورهای موضوعی :
دانش سرمایهگذاری
زهرا شیرازیان
1
,
هاشم نیکومرام
2
,
تقی ترابی
3
1 - عضو هیات علمی دانشگاه آزاد ملایر
2 - استاد و هیات علمی دانشگاه علوم تحقیقات تهران
3 - ****دانشیار دانشکده مدیریت و اقتصاد، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران،ایران.
تاریخ دریافت : 1396/08/06
تاریخ پذیرش : 1396/10/10
تاریخ انتشار : 1399/09/01
کلید واژه:
عدم تقارن,
اثر اهرمی,
کلید واژه ها: خوشه بندی نوسانات,
چکیده مقاله :
هدف از این پژوهش بررسی خوشه بندی نوسانات و عدم تقارن آن در بورس اوراق بهادار تهران می باشد.تغییرات بزرگ در قیمتها تمایل به تغییرات بزرگ و تغییرات کوچک تمایل به تغییرات کوچک دارند که بدان خوشه بندی نوسانات گفته میشود.از طرفی نوسانات بیشتر بازده، تمایل به تشکیل خوشه بیشتری نسبت به نوسانات کوچک دارند که بدان عدم تقارن خوشه بندی نوسانات گفته می شود. نوسانات بازده های دارایی می تواند به طور مستقیم روی قیمت اختیارهای معامله و ریسک سهام و پورتفوی اثر بگذارد. این پژوهش جزو تحقیقات کاربردی وکمی است .جامعه آماری سری زمانی شاخص کل بورس اوراق بهادار تهران و نمونه مورد استفاده سری زمانی بازده شاخص کل در بازه زمانی ابتدای سال 1387 تا مرداد سال 1396 می باشد . مقادیر شاخص از نرم افزار ره آورد نوین استخراج و سپس بازده لگاریتمی محاسبه و با نرم افزار ایویوز تحلیل شده اند. براساس رهیافت باکس و جنکینز معادله میانگین ARMA تهیه و با ARCH test وجود خوشه بندی نوسانات تایید شد.مدل TGARCH عدم تقارن در نوسانات و اثر اهرمی را نشان داد .با توجه به آماره آکاییک بهترین مدل خانواده گارچ جهت استخراج نوسانات ، ETGARCH معرفی شد .
چکیده انگلیسی:
The purpose of this study is to investigate the clustering of fluctuations and its asymmetry in Tehran Stock Exchange. Large changes in prices tend to be large changes and small changes tend to be small changes that are called clustering of fluctuations. On the other hand, higher volatility fluctuations, They tend to form more clusters than small fluctuations, which are referred to as clustering oscillations of oscillations. The volatility of return on assets can directly affect the price of transaction options and the risk of stocks and portfolios. This research is a practical and quantitative research. The statistical society of the time series of the index of Tehran Stock Exchange and the sample used in the time series of return on the total index in the period from the beginning of 2008 to August 2012 is. The index values are extracted from the new rational software and then the logarithmic yield is calculated and analyzed with the Eviews software. Based on the Box and Jenkins approach, the mean ARMA equation was obtained and ARCH test confirmed the existence of clustering fluctuations. The TGARCH model showed asymmetry in volatility and leverage effect. According to the AKIC statistic, the best GARCH model was used for extraction of fluctuations, ETGARCH was introduced.
منابع و مأخذ:
آل عمران، سید علی. آل عمران، رویا. 1391. بررسی روند نوسانی بورس اوراق بهادار تهران. فصلنامه علمی پژوهشی دانش مالی تحلیل اوراق بهادار. شماره چهاردهم.
ابونوری، اسمعیل. موتمنی، مانی. 1386. بررسی اثر اهرمی در بازار سهام تهران. مجله علوم اجتماعی و انسانی دانشگاه شیراز. دوره 26، شماره اول.
افشاری، حسین. 1382. بررسی ساختاری قابلیت پیش بینی قیمت سهام در بورس اورق بهادار تهران. فصلنامه بررسیهای حسایداری و حسابرسی.
تک روستا، علی. مروت، حبیب. تک روستا، حسین. 1390. مدل سازی نوسانات (تلاطم) بازدهی روزانه سهام در بورس اوراق بهادار تهران. فصلنامه اقتصاد پولی مالی (دانش و توسعه سابق). سال هجدهم.
مهرآرا، محسن. عبدلی، قهرمان. 1385. نقش اخبار خوب و بد در نوسانات بازدهی سهام ایران. فصلنامه پژوهش های اقتصادی ایران. 260، 54-41.
نیکومرام، هاشم. سعیدی، علی. عنبرستانی، مرجان. 1390. بررسی حافظه بلند مدت در بورس اوراق بهادار تهران. فصلنامه علمی پژوهشی دانش سرمایه گذاری. سال سوم. شماره
Alberg, D., Shailit, H. Yousef, R. (2008). Estimating Stock Market Volatility Using Asy Garch Models. Financial Economics. 18.
Balu, B,. G.Griffith, T. (2016). Price Clustering And The Stability Of Stock Prices. Jiornal Of Business Research. 69.
Cont, R. (2005). Volatility Clustering In Financial Markets: Empirid Facts And Agent-Base Models.
Girandina, I, Bouchaud, J.Ph. (2003). Volatility Clustering In Agenet Based Market Models.Elsevier. 6-16.
He, X.Zh., Li, K. Wang, Ch. (2016). Volatility Clustering: Theoritical Approach. Journal Of Economic Behevioe & Organization. 374-297.
Ilker, G., Pekaya, M. (2014). Estimating And Forecasting Volatility Of Financial Markets Using Asymmetrics Garch Models: An Application On Turkish Financial Markets. International Journal Of Economics And Finance.6.4.
Joshi,P.(2014). Forecasting Volatility Of Bombay Stock Exchange. International Journal Of Current Research And Academic Review.2.7.
Ning, C., Xu, D., Wirjanto, T. (2015). Is Volatility Clustering Of Asset Returns Asymment. Journal Of Banking & Finance. 62-76.
Nlyitegeka, O., Tewari, D.D. (2013). Volatility Clustering At The Johasnburg Stock Exchange: Investigation And Analysis. Journal Of Social Sciences.4.14.
Saleem, K. (2007). Modeling Time Varying Volatility Of Karachi Stock Exchange (KSE).
Tripathy, T., A.Gil-Alana, L. (2015) Modeling Time-Varying Volatility In The Indian Stock Returns: Some Empricial Evidence. Review Of Development Finance.91-97.
Alfarano, and Lux, T. (2001), “A minimal noise trader model with realistic time series properties”. Economics Working Papers, Christian-Albrechts-University of Kiel, Department of Economics.
Arguile, P. (2012), Performanceodf efensivesharesontheJSEduring financiaclrisise: vidence from analysis or feturnsand volatility (Doctoral dissertation, Rhodes University).
Black, F. (1976), “Capital market equilibrium with restricted borrowing” ThJeournaoBlfusiness . 5(3): 444-455.
Bollerslev, T.( 1986), “Generalized Autoregressive Conditional Heteroskedasticity”. JournaoElfconometrics . 31, 307-327. Brooks, C. (2002I)n, troductorEyconometricfsoFrinance. Cambridge: Cambridge University Press.
Diebold, F. (2012), 100+ Years of Financial Risk Measurement and Management. University of Pennsylvania and NBER. Available from: http://www.ssc.upenn.edu/~fdiebold/papers/paper108/DieboldElgar.pdf [Accessed 12/12/2012]
Chinzara, Z.( 2008), An empirical analysis of the long-run comovement, dynamic returns linkages and volatility transmission between the world major and the South African stock markets.Unpublished Masters thesis. Grahamstown: Rhodes University.
Chinzara, Z., and Aziakpono, M. J. (2009), “Dynamic returns linkages and volatility transmission between South African and world major stock markets”. JournaoSlftudieiEsnconomicasn Edconometrics , 33(3), 69-94.
Christie, A. A. (1982),“The stochastic behavior of common stock variances: Value, leverage and interest rate effects”. Journaoflifnancial Economics, 10(4), 407-432.
Emenike, Kalu O. (2010), Modelling stock returns volatility in Nigeria using GARCHModels. Published in: Proceeding of International
Conference on Management and Enterprise Development, Ebitimi Banigo Auditorium, University of Port Harcourt - Nigeria , Vol. 1, No. 4 (10. February 2010): pp. 5-11.
Engle, F. (1982), “Autoregressive conditional Heteroskedasticity with estimates of the variance of United Kingdom inflation”. Econometrica. 50, 987-1007.
Fama, E. F. (1965), “The behavior of stock-market prices”. ThjeournaoBlfusiness, 38(1), 34-105.
Floros, C. (2008), “Modeling volatility using GARCH models: Evidence from Egypt and Israel. MiddlEeasterFninancaenEd conomics ,2: 31-41
Hourvouliades, L., (2007), “Volatility Clustering in the Greek Futures market: Curse or Blessing?” InternationaRl esearcJhournaolf
FinancaenEdconomics . 11, Available from: http://wwww.eurojournal[Accessed on 03/05/2011]
Jacobsen ,B. and Dannenburg, D. (2003), “Volatility clustering in monthly stock returns.” JournaoElfmpiricaFlinance . 10(4): 479-503. Jagajeevan, S .(2012), Return Volatility and asymmetric news effect in Sri Lankan Stock Market. Staff Studies, 40(1), 37 -57
Louw, P (2008), Evidence of volatility clustering on the FTSE/JSE top 40 index. Masters dissertation. Stellenbosch: University of Stellenbosch.
Mandelbrot, B. (1963), "The Variation of Certain Speculative Prices," JournaoBlfusiness, 36, 394-419.
Nelson, D. B. (1991), “Conditional Heteroskedasticity in Asset returns: A new Approach”. Econometrica, 59 (2): 347-370. Park, B. J. (2008), Herd behavior and volatility in financial In The3rdInternationaCl onferenceonAsia-PacificFinancial Markets.
Samouilhan, N. (2007), The persistence of SA equity volatility: A Component ARCHperspective. Journaotlhf SetudoyEfconomicasnd Econometrics, 31(1): 99-117.
Yamamoto, R. (2011), “Volatility clustering and herding agents: does it matter what they observe?”. JournaoElfconomiIcnteractioannd Coordination. 6 :41–59
_||_